精英家教網 > 高中數學 > 題目詳情

在一個口袋中裝有12個大小相同的黑球、白球和紅球。已知從袋中任意摸出2個球,至少得到一個黑球的概率是
求:(1)袋中黑球的個數;
(2)從袋中任意摸出3個球,至少得到2個黑球的概率。

(1)3(2)

解析試題分析:(1)記“從袋中任意摸出2個球,至少得到1個黑球”為事件A,
設袋中黑球的個數為x,
則P(A)=1-P()=1-,解得x=3或者x=20(舍去)
故黑球為3個
(2)記“從袋中任意摸出3個球,至少得到2個黑球”為事件B
則P(B)=
考點:古典概型概率
點評:古典概型概率的求解首先找到所有基本事件種數與滿足題意要求的基本事件種數,然后求其比值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

選聘高校畢業(yè)生到村任職,是黨中央作出的一項重大決策,這對培養(yǎng)社會主義新農村建設帶頭人、引導高校畢業(yè)生面向基層就業(yè)創(chuàng)業(yè),具有重大意義。為了響應國家號召,某大學決定從符合條件的6名(其中男生4人,女生2人)報名大學生中選擇3人,到某村參加村委會主任應聘考核。
(Ⅰ)設所選3人中女生人數為,求的分布列及數學期望;
(Ⅱ)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

現(xiàn)有4個人去參加春節(jié)聯(lián)歡活動,該活動有甲、乙兩個項目可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個項目聯(lián)歡,擲出點數為1或2的人去參加甲項目聯(lián)歡,擲出點數大于2的人去參加乙項目聯(lián)歡.
(Ⅰ)求這4個人中恰好有2人去參加甲項目聯(lián)歡的概率;
(Ⅱ)求這4個人中去參加甲項目聯(lián)歡的人數大于去參加乙項目聯(lián)歡的人數的概率;
(Ⅲ)用分別表示這4個人中去參加甲、乙項目聯(lián)歡的人數,記,求隨機變量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

現(xiàn)有一枚質地均勻的骰子,連續(xù)投擲兩次,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是7的結果有多少種?
(3)向上的點數之和是7的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某班數學興趣小組有男生3名,記為,女生2名,記為,現(xiàn)從中任選2名學生去參加校數學競賽
⑴寫出所有的基本事件
⑵求參賽學生中恰好有一名男生的概率
⑶求參賽學生中至少有一名男生的概率

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(Ⅱ)花店記錄了100 天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
頻數
10
20
16
16
15
13
10
(i)假設花店在這100天內每天購進17枝玫瑰花,求這100 天的日利潤(單位:元)的平均數;
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果如下表:

日銷售量(噸)
1
1.5
2
天數
10
25
15
(1)計算這50天的日平均銷售量;
(2)若以頻率為概率,且每天的銷售量相互獨立.
①求5天中該種商品恰有2天的銷售量為1.5噸的概率;
②已知每噸該商品的銷售利潤為2萬元,X表示該種商品兩天銷售利潤的和,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判,設各局中雙方獲勝的概率均為各局比賽的結果都相互獨立,第局甲當裁判.
(I)求第局甲當裁判的概率;
(II)求前局中乙恰好當次裁判概率.

查看答案和解析>>

同步練習冊答案