分析 (1)利用等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公比,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由bn=log3an=$lo{g}_{3}{3}^{n-1}$=n-1,利用分組求和法能求出{bn}的前n項(xiàng)和.
解答 解:(1)∵等比數(shù)列{an}滿足,a2=3,a5=81,
∴$\left\{\begin{array}{l}{{a}_{1}q=3}\\{{a}_{1}{q}^{4}=81}\end{array}\right.$,解得a1=1,q=3,
∴數(shù)列{an}的通項(xiàng)公式${a}_{n}={3}^{n-1}$.
(2)∵bn=log3an=$lo{g}_{3}{3}^{n-1}$=n-1,
∴{bn}的前n項(xiàng)和:
Sn=(1+2+3+…+n)-n
=$\frac{n(n+1)}{2}-n$
=$\frac{n(n-1)}{2}$.
點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,考查等差數(shù)列、等比數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22016-1 | B. | 22016+1 | C. | 22017-1 | D. | 22017+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 150 | B. | 240 | C. | 120 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{13}$ | B. | $\frac{5}{13}$ | C. | -$\frac{5}{12}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 55 | B. | 70 | C. | 85 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com