(本題滿分14分 )在銳角中,已知內(nèi)角A、B、C所對的邊分別為a、b、c,且滿足2sinB(2cos2-1)=-cos2B.
(1)求B的大小;
(2)如果,求的面積的最大值.
(1)B=;(2)△ABC的面積最大值為。
【解析】(1)由2sinB(2cos2-1)=-cos2B可得2sinBcosB=-cos2B,從而得tan2B=-,得2B=,∴B=.
(2)由于B=,b=2,所以由余弦定理4=a2+c2-ac≥2ac-ac=ac,從而得出ac的最大值為4,故面積最大值確定.
解:(1)2sinB(2cos2-1)=-cos2BÞ2sinBcosB=-cos2B Þ tan2B=- ……4分
∵0<2B<π,∴2B=,∴B= ……6分
(2)由tan2B=- Þ B=
∵b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(當且僅當a=c=2時等號成立)……10
∵△ABC的面積S△ABC= acsinB=ac≤
∴△ABC的面積最大值為 ……14
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com