【題目】已知定義在上的函數(shù)的導函數(shù)為,且,若存在實數(shù),使不等式對于任意恒成立,則實數(shù)的取值范圍是()

A. B. C. D.

【答案】C

【解析】

對函數(shù)求導,分別求出的值,得到,利用導數(shù)得函數(shù)的最小值為1,把存在實數(shù),使不等式對于任意恒成立的問題轉(zhuǎn)化為對于任意恒成立,分離參數(shù),分類討論大于零,等于零,小于零的情況,從而得到的取值范圍。

由題可得,分別把代入中得到 ,解得:;

,,即

時,,則上單調(diào)遞減;

時,,則上單調(diào)遞增;

要存在實數(shù),使不等式對于任意恒成立,則不等式對于任意恒成立,即不等式對于任意恒成立;

(1)當時,顯然不等式不成立,舍去;

2)當時,不等式對于任意恒成立轉(zhuǎn)化為對于任意恒成立,即,解得:;

3)當時,不等式對于任意恒成立轉(zhuǎn)化為對于任意恒成立,即,解得:;

綜述所述,實數(shù)的取值范圍是

故答案選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下表表示的是某款車的車速與剎車距離的關系,試分別就,,三種函數(shù)關系建立數(shù)學模型,并探討最佳模擬,根據(jù)最佳模擬求車速為120km/h時的剎車距離.

車速/km/h

10

15

30

40

50

剎車距離/m

4

7

12

18

25

車速/((km/h

60

70

80

90

100

剎車距離/m

34

43

54

66

80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求的值域;

(2)設函數(shù), ,若對于任意, 總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣共有90間農(nóng)村淘寶服務站,隨機抽取5間,統(tǒng)計元旦期間的網(wǎng)購金額(單位萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)

(1)根據(jù)莖葉圖計算樣本均值

(2)若網(wǎng)購金額(單位萬元)不小于18的服務站定義為優(yōu)秀服務站,其余為非優(yōu)秀服務站.根據(jù)莖葉圖推斷90間服務站中有幾間優(yōu)秀服務站

(3)從隨機抽取的5間服務站中再任取2間作網(wǎng)購商品的調(diào)查,求恰有1間是優(yōu)秀服務站的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.

(1)求f()的值;

(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;

(3)解不等式f(2x)>f(8x-6)-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.已知2018年為戊戌年,那么到改革開放一百年,即2078年為__________年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標,制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.若則認定該戶為“絕對貧困戶”,若則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;

(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;

(3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角A,BC的對邊分別為a,bc,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

同步練習冊答案