已知實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值比最小值大
12
,求實(shí)數(shù)a的值.
分析:分a>1和0<a<1兩種情況來解,注意利用函數(shù)的單調(diào)性求出最值,再應(yīng)用條件求a.
解答:解:當(dāng)a>1時(shí),f(x)=logax在區(qū)間[a,2a]上是增函數(shù),故最大值為f(2a),最小值為f(a),
所以loga(2a)-logaa=
1
2
,
所以a=4,滿足a>1,
當(dāng)0<a<1時(shí),f(x)=logax在區(qū)間[a,2a]上是減函數(shù),故最大值為f(a),最小值為f(2a),
所以logaa-loga(2a)=
1
2

所以a=
1
4
,滿足0<a<1,
綜上所述,a=4或a=
1
4
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與特殊點(diǎn),體現(xiàn)分類討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0且a≠1,命題p:y=loga(2-ax)在區(qū)間[0,
12
]
上為減函數(shù);命題q:方程ex-x+a-3=0在[0,1]有解.若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值比最小值大數(shù)學(xué)公式,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)南一中高三(上)10月質(zhì)量檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知實(shí)數(shù)a>0且a≠1,命題p:y=loga(2-ax)在區(qū)間上為減函數(shù);命題q:方程ex-x+a-3=0在[0,1]有解.若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省襄陽市襄州、棗陽、宜城、曾都一中聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知實(shí)數(shù)a>0且a≠1,命題p:y=loga(2-ax)在區(qū)間上為減函數(shù);命題q:方程ex-x+a-3=0在[0,1]有解.若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案