設(shè)橢圓=1(a>b>0)的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)(    )

A.必在圓x2+y2=2內(nèi)      B.必在圓x2+y2=2上

C.必在圓x2+y2=2外      D.以上三種情形都有可能

 

【答案】

A

【解析】

試題分析:本題只要判斷與2的大小,時,點(diǎn)P在圓上,時,點(diǎn)P在圓內(nèi),時,點(diǎn)P在圓外.又

,故選A.

考點(diǎn):點(diǎn)與圓的位置關(guān)系及韋達(dá)定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省2007年五校聯(lián)考調(diào)研數(shù)學(xué)試卷(理科)-蘇教版 題型:013

設(shè)橢圓=1(a>b>0)的半焦距為c,直線l過(0,a)和(b,0),已知原點(diǎn)到l的距離等于c,則橢圓的離心率為:

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試天津卷文數(shù) 題型:044

設(shè)橢圓=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)A,B分別為橢圓的左右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若··=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓=1(a>b>0)的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)(  )

(A)必在圓x2+y2=2內(nèi)

(B)必在圓x2+y2=2上

(C)必在圓x2+y2=2外

(D)以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,設(shè)橢圓=1(ab>0)的面積為abπ,過坐標(biāo)原點(diǎn)的直線l、x軸正半軸及橢圓圍成兩區(qū)域面積分別設(shè)為s、t,則s關(guān)于t的函數(shù)圖象大致形狀為圖中的

(  )

查看答案和解析>>

同步練習(xí)冊答案