6.已知tanα=$\frac{3}{4}$,則sin2α=(  )
A.$-\frac{12}{25}$B.$\frac{12}{25}$C.$-\frac{24}{25}$D.$\frac{24}{25}$

分析 由已知利用二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式化簡化簡求值.

解答 解:∵tanα=$\frac{3}{4}$,
∴sin2α=2sinαcosα=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{2×\frac{3}{4}}{1+(\frac{3}{4})^{2}}$=$\frac{24}{25}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是R上可導(dǎo)的增函數(shù),g(x)是R上可導(dǎo)的奇函數(shù),對(duì)?x1,x2∈R都有|g(x1)+g(x2)|≥|f(x1)+f(x2)|成立,等差數(shù)列{an}的前n項(xiàng)和為Sn,f(x)同時(shí)滿足下列兩件條件:f(a2-1)=1,f(a9-1)=-1,則S10的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ex-ax2,g(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)求g(x)的極值;
(Ⅱ)若f(x)≥x+1在x≥0時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距為4,左、右焦點(diǎn)分別為F1、F2,且C1與拋物線C2:y2=x的交點(diǎn)所在的直線經(jīng)過F2
(Ⅰ)求橢圓C1的方程;
(Ⅱ)分別過F1、F2作平行直線m、n,若直線m與C1交于A,B兩點(diǎn),與拋物線C2無公共點(diǎn),直線n與C1交于C,D兩點(diǎn),其中點(diǎn)A,D在x軸上方,求四邊形AF1F2D的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加x元,對(duì)應(yīng)的銷量y(萬份)與x(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組x與y的對(duì)應(yīng)數(shù)據(jù):
x(元)2530384552
銷售y(萬冊(cè))7.57.16.05.64.8
據(jù)此計(jì)算出的回歸方程為$\hat y=10.0-bx$.
(i)求參數(shù)b的估計(jì)值;
(ii)若把回歸方程$\hat y=10.0-bx$當(dāng)作y與x的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)z+$\frac{2}{z}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.各項(xiàng)均不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,則$\frac{{S}_{5}}{{a}_{3}}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某顏料公司生產(chǎn)A、B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸;生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸、200噸.如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( 。
A.14000元B.16000元C.18000元D.20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=e-x+ax(a∈R)
(1)討論f(x)的最值;
(2)若a=0,求證:f(x)>-$\frac{1}{2}$x2+$\frac{5}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案