分析 (1)取BC中點(diǎn)M,連接AM,則AM∥平面PQB1;
(2)作PN∥C1A1,則直線A1C1與平面PQB1所成角=直線PN與平面PQB1所成角,求出N到平面PQB1的距離,即可求直線A1C1與平面PQB1所成角的正弦值.
解答 解:(1)取BC中點(diǎn)M,連接AM,則AM∥平面PQB1;
(2)作QO⊥平面ABB1A1,與A1A延長(zhǎng)線交于O,則AO=1,QO=$\sqrt{3}$,
OB1=$\sqrt{25+4-2×5×2×\frac{1}{2}}$=$\sqrt{19}$,∴QB1=$\sqrt{22}$,
∵B1P=2,PQ=2$\sqrt{3}$,
∴cos∠QPB1=$\frac{12+4-22}{2×2\sqrt{3}×2}$=-$\frac{\sqrt{3}}{6}$,
∴sin∠QPB1=$\frac{\sqrt{33}}{6}$,
∴${S}_{△PQ{B}_{1}}$=$\frac{1}{2}×2\sqrt{3}×2×\frac{\sqrt{33}}{6}$=$\sqrt{11}$,
作PN∥C1A1,則直線A1C1與平面PQB1所成角=直線PN與平面PQB1所成角,
∵${S}_{△PQN}=\frac{1}{2}×4×\sqrt{3}$=2$\sqrt{3}$,∴${V}_{{B}_{1}-PQN}$=$\frac{1}{3}×2\sqrt{3}×\sqrt{3}$=2,
設(shè)N到平面PQB1的距離為h,則$\frac{1}{3}×\sqrt{11}h=2$,∴h=$\frac{3}{\sqrt{11}}$,
∴直線A1C1與平面PQB1所成角的正弦值=$\frac{\frac{3}{\sqrt{11}}}{4}$=$\frac{3\sqrt{11}}{44}$.
點(diǎn)評(píng) 本題考查線面平行,考查線面角,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+i | B. | 4-i | C. | -4+i | D. | -4-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{5}{4}$,1) | B. | ($\frac{3}{4}$,1) | C. | ($\frac{4}{5}$,1) | D. | (-1,$\frac{3}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com