設函數(shù)f(x)=
1
3
x3+ax2+bx+c(a<0)在x=0處取得極值-1.
(1)設點A(-a,f(-a)),求證:過點A的切線有且只有一條;并求出該切線方程.
(2)若過點(0,0)可作曲線y=f(x)的三條切線,求a的取值范圍;
(3)設曲線y=f(x)在點(x1,f(x1)),(x2,f(x2))(x1≠x2)處的切線都過點(0,0),證明:f′(x1)≠f′(x2).
(1)證明:由f(x)=
1
3
x3+ax2+bx+c(a<0),得:f(x)=x2+2ax+b,
由題意可得f(0)=0,f(0)=-1,解得b=0,c=-1.
f(x)=
1
3
x3+ax2-1

經(jīng)檢驗,f(x)在x=0處取得極大值.
設切點為(x0,y0),則切線方程為y-y0=f(x0)(x-x0)
即為y=(x02+2ax0)x-
2
3
x03-ax02-1

把(-a,f(-a))代入方程可得x03+3ax02+3a2x0+a3=0,
(x0+a)3=0,所以x0=-a.
即點A為切點,且切點是唯一的,故切線有且只有一條.
所以切線方程為a2x+y+
1
3
a3+1=0
;
(2)因為切線方程為y=(x02+2ax0)x-
2
3
x03-ax02-1
,
把(0,0)代入可得
2
3
x03+ax02+1=0
,
因為有三條切線,故方程得
2
3
x03+ax02+1=0
有三個不同的實根.
g(x)=
2
3
x3+ax2+1
(a<0)
g(x)=2x+2ax,令g(x)=2x+2ax=0,可得x=0和x=-a.
當x∈(-∞,0)時,g(x)>0,g(x)為增函數(shù),
當x∈(0,-a)時,g(x)<0,g(x)為減函數(shù),
當x∈(-a,+∞)時,g(x)>0,g(x)為增函數(shù),
所以,當x=0時函數(shù)g(x)取得極大值為g(0)=1>0.
當x=-a時函數(shù)g(x)取得極小值,
極小值為g(-a)=
2
3
×(-a)3+a•(-a)2+1=
1
3
a3+1

因為方程有三個根,故極小值小于零,
1
3
a3+1<0
,所以a<-
33

(3)證明:假設f(x1)=f(x2),則x12+2ax1=x22+2ax2
所以(x1-x2)(x1+x2)=-2a(x1-x2
因為x1≠x2,所以x1+x2=-2a.
由(2)可得
2
3
x13+ax12+1=0
2
3
x23+ax22+1=0
,兩式相減可得
2
3
(x23-x13)+a(x22-x12)=0

因為x1≠x2,故
2
3
(x22+x1x2+x12)+a(x1+x2)=0

把x1+x2=-2a代入上式可得,x22+x1x2+x12=3a2,
所以(x1+x2)2-x1x2=3a2,(-2a)2-x1x2=3a2
所以x1x2=a2
又由x1x2<(
x1+x2
2
)2=(
-2a
2
)2=a2
,這與x1x2=a2矛盾.
所以假設不成立,即證得f(x1)≠f(x2)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)設函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)定義在實數(shù)集上,它的圖象關于直線x=1對稱,且當x≥1時,f(x)=3x-1,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為D,若對任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).則f(
1
3
)+f(
1
8
)
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設函數(shù)f(x)=ax3+bx2+cx,記f(x)的導函數(shù)是f(x).
(I)當a=-1,b=c=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當c=-a2(a>0)時,若函數(shù)f(x)的兩個極值點x1、x2滿足|x1-x2|=2,求b的取值范圍;
(III)若a=-
1
3
令h(x)=|f(x)|,記h(x)在[-1,1]上的最大值為H,當b≥0,c∈R時,證明:H
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1處取到一個極小值,且存在實數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步練習冊答案