【題目】已知直線l經過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點,且 ,求a的值.
【答案】
(1)解:直線l經過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,
由 ,得 ,所以P(1,1).
因為l⊥l3,所以kl=﹣1,
所以直線l的方程為y﹣1=﹣(x﹣1),即x+y﹣2=0
(2)解:由已知可得:圓心C到直線l的距離為 ,
因為 ,所以 ,
所以 ,
解得a=0或a=4.
【解析】(1)直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0聯(lián)立方程組,求出交點P(1,1),由l⊥l3,求出斜率kl=﹣1,由此能求出直線l的方程.(2)圓心C到直線l的距離為 ,由 ,得到 ,由此能求出a的值.
【考點精析】本題主要考查了直線與圓的三種位置關系的相關知識點,需要掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an]的前n項和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明: +… (n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為△ABC的外心,若 + + = ,則M是△ABC的( )
A.重心(三條中線交點)
B.內心(三條角平分線交點)
C.垂心(三條高線交點)
D.外心(三邊中垂線交點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a∈R,函數(shù)f(x)=|x2﹣2ax|,方程f(x)=ax+a的四個實數(shù)解滿足x1<x2<x3<x4 .
(1)求a的取值范圍;
(2)證明:f(x4)> +8 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1的底面是菱形.側棱長為5,平面ABCD⊥平面A1ACC1 , AB=3 ,∠BAD=60°,點E是△ABD的重心,且A1E=4.
(1)求證:平面A1DC1∥平面AB1C;
(2)求二面角B1﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數(shù)據: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴水的高度,某人在噴水柱正西方向的點A測的水柱頂端的仰角為45°,沿點A向北偏東30°前進100m到達點B.在B點測得水柱頂端的仰角為30°,則水柱的高度是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com