20.已知集合A={x|-1<x<3},B={x|-2<x<1,x∈z},則A∩B=( 。
A.{0}B.[-1,1]C.{-1,0,1,2}D.D=[-2,3]

分析 列舉出B中的元素確定出B,找出A與B的交集即可.

解答 解:∵A={x|-1<x<3},B={x|-2<x<1,x∈Z}={-1,0},
∴A∩B={0},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角A-BC1-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的遞減區(qū)間為( 。
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若直線y=x+b與曲線(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共點(diǎn),則實(shí)數(shù)b的取值范圍是(  )
A.[1-2$\sqrt{2}$,3]B.[1-$\sqrt{2}$,3]C.[-1,1+2$\sqrt{2}$]D.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知指數(shù)函數(shù)y=g(x)滿足g(3)=8,又定義域?yàn)閷?shí)數(shù)集R的函數(shù)f(x)=$\frac{1-g(x)}{1+g(x)}$是奇函數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)若對(duì)任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i是虛數(shù)單位,則復(fù)數(shù)(1+i)2的虛部是( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)已知$z=\frac{1+2i}{3-4i}$,求|z|;
(2)已知2-3i是關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0的一個(gè)根,求實(shí)數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={1,2,3},B={2,3},則( 。
A.A?BB.A=BC.A∪B=∅D.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,點(diǎn)$R({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{14}}}{4}})$在橢圓上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線y=k(x-1)(k≠0)與橢圓交于A,B兩點(diǎn),點(diǎn)M是橢圓C的右頂點(diǎn),直線AM與直線BM分別與軸交于點(diǎn)P,Q,求|OP|•|OQ|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案