【題目】設{an}和{bn}是兩個等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù).(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時, >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.
【答案】
(1)
解: a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,
當n=1時,c1=max{b1﹣a1}=max{0}=0,
當n=2時,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,
當n=3時,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,
下面證明:對n∈N*,且n≥2,都有cn=b1﹣na1,
當n∈N*,且2≤k≤n時,
則(bk﹣nak)﹣(b1﹣na1),
=[(2k﹣1)﹣nk]﹣1+n,
=(2k﹣2)﹣n(k﹣1),
=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,
則(bk﹣nak)﹣(b1﹣na1)≤0,則b1﹣na1≥bk﹣nak,
因此,對n∈N*,且n≥2,cn=b1﹣na1=1﹣n,
cn+1﹣cn=﹣1,
∴c2﹣c1=﹣1,
∴cn+1﹣cn=﹣1對n∈N*均成立,
∴數(shù)列{cn}是等差數(shù)列;
(2)
證明:設數(shù)列{an}和{bn}的公差分別為d1,d2,下面考慮的cn取值,
由b1﹣a1n,b2﹣a2n,…,bn﹣ann,
考慮其中任意bi﹣ain,(i∈N*,且1≤i≤n),
則bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,
=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),
下面分d1=0,d1>0,d1<0三種情況進行討論,
①若d1=0,則bi﹣ain═(b1﹣a1n)+(i﹣1)d2,
當若d2≤0,則(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,
則對于給定的正整數(shù)n而言,cn=b1﹣a1n,此時cn+1﹣cn=﹣a1,
∴數(shù)列{cn}是等差數(shù)列;
當d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,
則對于給定的正整數(shù)n而言,cn=bn﹣ann=bn﹣a1n,
此時cn+1﹣cn=d2﹣a1,
∴數(shù)列{cn}是等差數(shù)列;
此時取m=1,則c1,c2,…,是等差數(shù)列,命題成立;
②若d1>0,則此時﹣d1n+d2為一個關(guān)于n的一次項系數(shù)為負數(shù)的一次函數(shù),
故必存在m∈N*,使得n≥m時,﹣d1n+d2<0,
則當n≥m時,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此當n≥m時,cn=b1﹣a1n,
此時cn+1﹣cn=﹣a1,故數(shù)列{cn}從第m項開始為等差數(shù)列,命題成立;
③若d1<0,此時﹣d1n+d2為一個關(guān)于n的一次項系數(shù)為正數(shù)的一次函數(shù),
故必存在s∈N*,使得n≥s時,﹣d1n+d2>0,
則當n≥s時,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此,當n≥s時,cn=bn﹣ann,
此時= =﹣an+ ,
=﹣d2n+(d1﹣a1+d2)+ ,
令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,
下面證明: =An+B+ 對任意正整數(shù)M,存在正整數(shù)m,使得n≥m, >M,
若C≥0,取m=[ +1],[x]表示不大于x的最大整數(shù),
當n≥m時, ≥An+B≥Am+B=A[ +1]+B>A +B=M,
此時命題成立;
若C<0,取m=[ ]+1,
當n≥m時,
≥An+B+ ≥Am+B+C>A +B+C ≥M﹣C﹣B+B+C=M,
此時命題成立,
因此對任意正數(shù)M,存在正整數(shù)m,使得當n≥m時, >M;
綜合以上三種情況,命題得證.
【解析】(1.)分別求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1 , c2 , c3;由(bk﹣nak)﹣(b1﹣na1)≤0,則b1﹣na1≥bk﹣nak , 則cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1對n∈N*均成立;
(2.)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分類討論d1=0,d1>0,d1<0三種情況進行討論根據(jù)等差數(shù)列的性質(zhì),即可求得使得cm , cm+1 , cm+2 , …是等差數(shù)列;設 =An+B+ 對任意正整數(shù)M,存在正整數(shù)m,使得n≥m, >M,分類討論,采用放縮法即可求得因此對任意正數(shù)M,存在正整數(shù)m,使得當n≥m時, >M.
【考點精析】根據(jù)題目的已知條件,利用等差關(guān)系的確定的相關(guān)知識可以得到問題的答案,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。
(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應事件的概率)
①
②
③
評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;
(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學期望。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生暑假閱讀名著的情況,一名教師對某班級的所有學生進行了調(diào)查,調(diào)查結(jié)果如下表.
男生 | |||||
女生 |
()從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為的概率?
()若從閱讀名著不少于本的學生中任選人,設選到的男學生人數(shù)為,求隨機變量的分布列和數(shù)學期望.
()試判斷男學生閱讀名著本數(shù)的方差與女學生閱讀名著本數(shù)的方程的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流A類”大學就業(yè)部從該校2018年已就業(yè)的大學本科畢業(yè)生中隨機抽取了100人進行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機1部,求獲贈智能手機的2人月薪都不低于1.75萬元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個月薪水的3%收。挥迷撔>蜆I(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學生中隨機抽取了50人,具體的調(diào)查結(jié)果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機選取4人進行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC=4,BC=2,點D為AB延長線上一點,BD=2,連結(jié)CD,則△BDC的面積是 , com∠BDC= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下:,,,,,,,,,,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營一批進價是每件30元的商品,在市場銷售中發(fā)現(xiàn),此商品的銷售單價元與日銷售量件之間有如下關(guān)系
銷售單價(元) | 30 | 40 | 45 | 50 |
日銷售量(件) | 60 | 30 | 15 | 0 |
(1)在平面直角坐標系中,根據(jù)表中提供的數(shù)據(jù)描出實數(shù)對對應的點,并確定與的一個函數(shù)關(guān)系式;
(2)設經(jīng)營此商品的日銷售利潤為元,根據(jù)上述關(guān)系式寫出關(guān)于的函數(shù)關(guān)系式,
并指出銷售單價為多少時,才能獲得最大日銷售利潤。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com