設函數(shù)f(x)=|x+
1
a
|+|x-a|(a>0).
(Ⅰ)證明:f(x)≥2;
(Ⅱ)若f(3)<5,求a的取值范圍.
考點:絕對值不等式的解法
專題:不等式的解法及應用
分析:(Ⅰ)由a>0,f(x)=|x+
1
a
|+|x-a|,利用絕對值三角不等式、基本不等式證得f(x)≥2成立.
(Ⅱ)由f(3)=|3+
1
a
|+|3-a|<5,分當a>3時和當0<a≤3時兩種情況,分別去掉絕對值,求得不等式的解集,再取并集,即得所求.
解答: 解:(Ⅰ)證明:∵a>0,f(x)=|x+
1
a
|+|x-a|≥|(x+
1
a
)-(x-a)|=|a+
1
a
|=a+
1
a
≥2
a•
1
a
=2,
故不等式f(x)≥2成立.
(Ⅱ)∵f(3)=|3+
1
a
|+|3-a|<5,
∴當a>3時,不等式即a+
1
a
<5,即a2-5a+1<0,解得3<a<
5+
21
2

當0<a≤3時,不等式即 6-a+
1
a
<5,即 a2-a-1>0,求得
1+
5
2
<a≤3.
綜上可得,a的取值范圍(
1+
5
2
,
5+
21
2
).
點評:本題主要考查絕對值三角不等式,絕對值不等式的解法,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}(n∈N*)的前n項和,且S8>S9>S7,有下列四個命題,期中是假命題的是( �。�
A、公差d<0
B、在所有Sn<0中,S17最大
C、a8>a9
D、滿足Sn>0的n的個數(shù)有15個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(0,
3
),離心率為
1
2
,左右焦點分別為F1(-c,0),F(xiàn)2(c,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=-
1
2
x+m與橢圓交于A、B兩點,與以F1F2為直徑的圓交于C、D兩點,且滿足
|AB|
|CD|
=
5
3
4
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,點P在平面ABC上的射影D是AC的中點,BC=2AC=8,AB=4
5

(Ⅰ)證明:平面PBC⊥平面PAC;
(Ⅱ)若PD=2
3
,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設各場比賽相互獨立);
場次投籃次數(shù)命中次數(shù)場次投籃次數(shù)命中次數(shù)
主場12212客場1188
主場21512客場21312
主場3128客場3217
主場4238客場41815
主場52420客場52512
(1)從上述比賽中隨機選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;
(3)記
.
x
是表中10個命中次數(shù)的平均數(shù),從上述比賽中隨機選擇一場,記X為李明在這場比賽中的命中次數(shù),比較EX與
.
x
的大�。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
m2
-
y2
n2
=1(m>n>0)和橢圓
x2
m2
+
y2
n2
=1(m>n>0)的離心率分別為e1和e2,則e1e2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,滿足Sn≥S5=-20,n∈N*,則數(shù)列公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an},{an2}(n∈N*)都是等差數(shù)列,若a1=3,則a1+a22+a33=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l1和l2是圓x2+y2=2的兩條切線,若l1與l2的交點為(1,3),則l1與l2的夾角的正切值等于
 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷