已知二次函數(shù)f(x)=ax2+bxa、b是常數(shù)且a≠0)滿足條件:f(2)=0且方程f(x)=x有等根。

    1)求f(x)的解析式。

    2)問(wèn)是否存在實(shí)數(shù)m,nm<n)使f(x)的定義域和值域分別為[mn][2m,2n],如存在,求出mn的值,如不存在,說(shuō)明理由。

 

答案:
解析:

(1)∵方程αx2+(b-1)x=0(α≠0)有等根,

    ∴△=(b-1)2-4α×0=0b=1,

    又,f(2)=0,∴4α+2b=0,

    ,。

(2)

    ,

    而二次函數(shù)的對(duì)稱軸方程為x=1,

    ∴當(dāng)n≤時(shí),f(x)在[mn]上為增函數(shù),設(shè)m,n存在則

    即

        

    即存在實(shí)數(shù)m=-2,n=0使,f(x)的定義域?yàn)閇-2,0],值域?yàn)閇-4,0]。

 


提示:

本題是一道確定函數(shù)解析式、定義域、值域?yàn)橐惑w的綜合題,應(yīng)從,f(2)=0和f(x)=x有等根著手,進(jìn)行各個(gè)擊破。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+
1
2
滿足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表達(dá)式;
(2)若f(x)在定義域(-1,t]上的值域?yàn)椋?1,1],求t的取值范圍;
(3)是否存在實(shí)數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)y=f(x)+
2
3
x-1
的圖象過(guò)原點(diǎn)且關(guān)于y軸對(duì)稱,記函數(shù) h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當(dāng)a=
1
10
時(shí),求函數(shù)y=h(x)
的單調(diào)遞減區(qū)間;
(Ⅲ)試討論函數(shù) y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個(gè)不相等的實(shí)根,當(dāng)a>0時(shí)判斷f(x)在(-1,1)上的單調(diào)性;
(3)若方程g(x)=x的兩實(shí)根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=
-x2-x+2
的定義域?yàn)锳,若對(duì)任意的x∈A,不等式x2-4x+k≥0成立,則實(shí)數(shù)k的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個(gè)不相等的實(shí)根,當(dāng)a>0時(shí)判斷f(x)在(-1,1)上的單調(diào)性;
(3)當(dāng)b=2a時(shí),問(wèn)是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實(shí)數(shù)a,不等式f(x)<4恒成立?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案