5.某地區(qū)18歲的女青年的血壓服從正態(tài)分布N(110,122).在該地區(qū)隨機地選一女青年,測量她的血壓X,求P{X≤105},P{100<X≤120};確定最小的x,使P{X>x}≤0.05.(結果用Φ(x)或其反函數(shù)表示)

分析 (1)利用P{X≤105}=P{$\frac{X-110}{12}$≤-$\frac{5}{12}$},P{100<X≤120}=Φ($\frac{120-110}{12}$)-Φ($\frac{100-110}{12}$),即可得出結論;
(2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ($\frac{x-110}{12}$)≥0.95,可得結論.

解答 解:已知血壓X~N(110,122).
(1)P{X≤105}=P{$\frac{X-110}{12}$≤-$\frac{5}{12}$}≈1-Φ(0.42)=0.3372,
P{100<X≤120}=Φ($\frac{120-110}{12}$)-Φ($\frac{100-110}{12}$)
=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.
(2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ($\frac{x-110}{12}$)≥0.95,
查表得$\frac{x-110}{12}$≥1.645,從而x≥129.74.

點評 本題考查概率的計算,考查學生轉化問題的能力,正確轉化是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點,M是棱PC的中點,PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求證:PE⊥平面ABCD;
(2)求直線BM與平面ABCD所成角的正切值;
(3)求直線BM與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(I)比較(x+1)(x-3)與(x+2)(x-4)的大。
(Ⅱ)解不等式|x2-5x+5|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.將偶函數(shù)g(x)的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)f(x)的圖象,若f(x)=Asinωx(a≠0,ω>0),則ω的值可以為( 。
A.6B.3C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)求曲線C1的普通方程;
(Ⅱ)已知曲線C2:$\left\{\begin{array}{l}{x=rcosα}\\{y=rsinα}\end{array}\right.$(α為參數(shù)),且曲線C1、C2的交點形成一正方形,求該正方形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.閱讀如圖的程序框圖,當該程序運行后輸出的x值是( 。
A.57B.63C.110D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知點F1是拋物線C:x2=4y的焦點,點F2為拋物線C的對稱軸與其準線的交點,過F2作拋物線C的切線,切點為A,若點A恰好在以F1,F(xiàn)2為焦點的雙曲線上,則雙曲線的離心率為( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\frac{\sqrt{6}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設α,β,γ為平面,m,n,l為直線,則m⊥β的一個充分條件是( 。
A.α⊥β,α∩β=l,m⊥lB.n⊥α,m⊥α,n⊥βC.α⊥γ,β⊥γ,m⊥αD.α⊥γ,α∩γ=m,β⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在1和16之間插入3個數(shù),使它們與這兩個數(shù)依次構成等比數(shù)列,則這3個數(shù)的積( 。
A.128B.±128C.64D.±64

查看答案和解析>>

同步練習冊答案