如果圓錐曲線
y2
λ+5
-
x2
2-λ
=1
的焦距與實數(shù)λ無關(guān),那么它的焦點坐標(biāo)是______.
由于λ+5+2-λ=7,
∴曲線為雙曲線且焦點在y軸上,∴c2=7,∴焦點坐標(biāo)是(0,±
7
)
,
故答案為(0,±
7
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為
5
2
,則C的漸近線方程為( 。
A.y=±
1
4
x
B.y=±
1
3
x
C.y=±xD.y=±
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
8
-
y2
4
=1
左右焦點分別為F1,F(xiàn)2,若過F1的直線與雙曲線的左支交于A、B兩點,且|AB|是|AF2|與|BF2|的等差中項,則|AB|等于( 。
A.2
2
B.4
2
C.8
2
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
25
+
y2
16
=1
與雙曲線
x2
8
-y2=1
有公共焦點F1,F(xiàn)2,P為橢圓與雙曲線的一個交點,則面積SPF1F2為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點,過F作直線l與一條漸近線平行,直線l與雙曲線交于點M,與y軸交于點N,若
FM
=
1
2
MN
,則雙曲線的離心率為( 。
A.
2
B.
3
C.
5
D.
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
25
+
y2
9
=1
的焦點相同,且它們的離心率之和等于
14
5

(1)求雙曲線的離心率的值;
(2)求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線C:2x2-y2=m(m>0)與拋物線y2=16x的準(zhǔn)線交于A,B兩點,且|AB|=4
3
,則m的值是(  )
A.116B.80C.52D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

斜率為2的直線L經(jīng)過拋物線的焦點F,且交拋物線與A、B兩點,若AB的中點到拋物線準(zhǔn)線的距離1,則P的值為(  ).
A.1           B.           C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=4x的弦AB的中點的橫坐標(biāo)為2,則|AB|的最大值為________.

查看答案和解析>>

同步練習(xí)冊答案