【題目】已知函數(shù)

(1)求曲線(xiàn)處的切線(xiàn)方程;

(2)函數(shù)在區(qū)間上有零點(diǎn),求的值;

(3)若不等式對(duì)任意正實(shí)數(shù)恒成立,求正整數(shù)的取值集合.

【答案】(1) ;(2) 的值為0或3 ;(3) .

【解析】

1)由的值可得切點(diǎn)坐標(biāo),求出的值,可得切線(xiàn)斜率,利用點(diǎn)斜式可得曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;(2)先利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后根據(jù)零點(diǎn)存在定理可判斷在區(qū)間、上分別存在一個(gè)零點(diǎn),從而可得結(jié)果;(3)當(dāng)時(shí),不等式為恒成立;當(dāng)時(shí),不等式可化為,可得,當(dāng)時(shí),不等式可化為,可得,結(jié)合(2),綜合三種情況,從而可得結(jié)果.

(1),所以切線(xiàn)斜率為,

,切點(diǎn)為,所以切線(xiàn)方程為

(2)令,得,

當(dāng)時(shí),,函數(shù)單調(diào)遞減;

當(dāng)時(shí),,函數(shù)單調(diào)遞增,

所以的極小值為,又,

所以在區(qū)間上存在一個(gè)零點(diǎn),此時(shí);

因?yàn)?/span>,,

所以在區(qū)間上存在一個(gè)零點(diǎn),此時(shí).綜上,的值為0或3.

(3)當(dāng)時(shí),不等式為.顯然恒成立,此時(shí)

當(dāng)時(shí),不等式可化為,

,則,

由(2)可知,函數(shù)上單調(diào)遞減,且存在一個(gè)零點(diǎn)

此時(shí),即

所以當(dāng)時(shí),,即,函數(shù)單調(diào)遞增;

當(dāng)時(shí),,即,函數(shù)單調(diào)遞減.

所以有極大值即最大值,于是

當(dāng)時(shí),不等式可化為,

由(2)可知,函數(shù)上單調(diào)遞增,且存在一個(gè)零點(diǎn),同理可得

綜上可知

又因?yàn)?/span>,所以正整數(shù)的取值集合為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,D為線(xiàn)段AC的中點(diǎn).

1)求證:

2)求直線(xiàn)與平面所成角的余弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)。

(1)求的單調(diào)區(qū)間;

(2)討論零點(diǎn)的個(gè)數(shù);

(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校科技小組在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn),設(shè)計(jì)方案如圖:航天器運(yùn)行(按順時(shí)針?lè)较颍┑能壽E方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞(xiàn))后返回的軌跡是以軸為對(duì)稱(chēng)軸、為頂點(diǎn)的拋物線(xiàn)的實(shí)線(xiàn)部分,降落點(diǎn)為.觀測(cè)點(diǎn)、同時(shí)跟蹤航天器.

1)求航天器變軌后的運(yùn)行軌跡所在的曲線(xiàn)方程;

2)試問(wèn):當(dāng)航天器在軸上方時(shí),觀測(cè)點(diǎn)、測(cè)得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,離心率為的橢圓過(guò)點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn)上存在點(diǎn),且過(guò)點(diǎn)的橢圓的兩條切線(xiàn)相互垂直,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).

(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;

(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類(lèi)專(zhuān)業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類(lèi)專(zhuān)業(yè)”有關(guān)?

閱讀時(shí)間不足8.5小時(shí)

閱讀時(shí)間超過(guò)8.5小時(shí)

理工類(lèi)專(zhuān)業(yè)

40

60

非理工類(lèi)專(zhuān)業(yè)

附:).

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,的中點(diǎn).

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線(xiàn)的方程為.

1)求圓的普通方程及直線(xiàn)的直角坐標(biāo)方程;

2)設(shè)直線(xiàn)與圓相交于、兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案