20.函數(shù)f(x)=-x3+3x2+9x+a,x∈[-2,2]的最小值為-2,則f(x)的最大值為( 。
A.25B.23C.21D.20

分析 先將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最大的一個(gè)就是最大值,最小的一個(gè)就是最小值,再根據(jù)條件求出a的值,最小值即可求得.

解答 解:求導(dǎo)函數(shù)可得f′(x)=-3x2+6x+9=-3(x+1)(x-3)
令f′(x)=-3x2+6x+9=0,解得x=-1或3
∵x∈[-2,-1)時(shí),f′(x)<0,函數(shù)單調(diào)減,x∈(-1,2]時(shí),f′(x)>0,函數(shù)單調(diào)增,
∴函數(shù)在x=-1時(shí),取得最小值,在x=-2或x=2時(shí),函數(shù)取得最大值,
∵f(-1)=-5+a=-2,
∴a=3,
∴f(-2)=2+a=5,f(2)=22+a=25,函數(shù)的最大值為25,
故選:A.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,解題的關(guān)鍵是利用導(dǎo)數(shù)工具,確定函數(shù)的最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知某幾何體的主視圖和左視圖是全等的等腰直角三角形,俯視圖是邊長(zhǎng)為2的正方形,那么它的體積是(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知正方形ABCD的邊長(zhǎng)為2,H是邊DA的中點(diǎn),在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則滿足|PH|<$\sqrt{2}$的概率為( 。
A.$\frac{π}{8}$B.$\frac{π}{8}+\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{4}+\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{AB}$=(cos23°,cos67°),$\overrightarrow{BC}$=(2cos68°,2cos22°),則△ABC的面積為(  )
A.2B.$\sqrt{2}$C.1D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C1:x+y=4,曲線${C_2}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.(θ$為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1,C2的極坐標(biāo)方程;
(2)若射線l:θ=α(p>0)分別交C1,C2于A,B兩點(diǎn),求$\frac{{|{OB}|}}{{|{OA}|}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{an}滿足a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),則$\sum_{i=1}^{100}$ai=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=4,點(diǎn)D是A1C1的中點(diǎn),則異面直線AD和BC1所成角的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(-1,1),B(2,-2),若直線l:x+my+m=0與線段AB(含端點(diǎn))相交,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,2]C.(-∞,-2]∪[-$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C過點(diǎn)$A(\frac{3}{4},\;0)$,且與直線$l:\;x=-\frac{3}{4}$相切,
(I)求圓心C的軌跡方程;
(II) O為原點(diǎn),圓心C的軌跡上兩點(diǎn)M、N(不同于點(diǎn)O)滿足$\overrightarrow{OM}•\overrightarrow{ON}=0$,已知$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OM}$,$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{ON}$,證明直線PQ過定點(diǎn),并求出該定點(diǎn)坐標(biāo)和△APQ面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案