設(shè)a,b,c,d∈R,則“a>b,c>d”是“ac>bd”成立的 ( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進行判斷.
解答: 解:若a=2,b=1,c=-2,d=-3,滿足a>b,c>d,但ac>bd不成立,
反之,如a=-2,b=1,c=-3,d=2,滿足ac>bd,但a>b,c>d不成立,
∴“a>b,c>d”是“ac>bd”成立的既不充分也不必要條件,
故選:D.
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,(an+1-2)(an-2)=2(n∈N*),則a2014的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>1,A=lg(
a+b
2
),B=
lga•lgb
,C=
1
2
(lga+lgb).則A、B、C從小到大的順序為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g′(x)是函數(shù)g(x)的導(dǎo)函數(shù),且f(x)=g′(x),下列命題中,真命題是( 。
A、若f(x)是奇函數(shù),則g(x)必是偶函數(shù)
B、若f(x)是偶函數(shù),則g(x)必是奇函數(shù)
C、若f(x)是周期函數(shù),則g(x)必是周期函數(shù)
D、若f(x)是單調(diào)函數(shù),則g(x)必是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R+上的函數(shù)f(x)單調(diào)遞減,且對任意x∈(0,+∞)恒有f(f(x)-log
1
2
x
)=1,則函數(shù)f(x)的零點為(  )
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓C1
x2
a2
+
y2
b2
=1(a>b>0與雙曲線C2的公共點左右焦點,它們在第一象限內(nèi)交于點M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2.若橢圓C1的離心率e∈[
3
8
,
4
9
],則雙曲線C2的離心率取值范圍是( 。
A、[
5
4
,
5
3
]
B、[
3
2
,+∞)
C、(1,4]
D、[
3
2
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值是( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的虛軸長是實軸長的2倍,則此雙曲線的離心率為( 。
A、
2
B、2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項都為正數(shù)的數(shù)列{an}的前行項和為Sn,且對任意n∈N*.都有2pSn=
a
2
n
+pan
(其中p>0為常數(shù)),記數(shù)列{
1
Sn
}前通項的和為Hn
(1)求數(shù)列{an}的通項公式及Hn;
(2)當(dāng)p=2時,將數(shù)列{
1
an
}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使對任意n∈N*.總有Tm<Hn+λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案