精英家教網 > 高中數學 > 題目詳情

若定義在R上的偶函數f(x)和奇函數g(x)滿足f(x)+g(x)=ex,則g(x)=                                                                           (  )

A.ex-ex                          B.(ex+ex)

C.(ex-ex)                       D.(ex-ex)

D

解析 由f(x)+g(x)=ex可得f(-x)+g(-x)=ex,又f(x)為偶函數,g(x)為奇函數,可得f(x)-g(x)=ex,則兩式相減,可得g(x)=,選D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)和奇函數g(x)滿足f(x)+g(x)=ex,則g(x)=(  )
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下四個命題:
①若定義在R上的偶函數f(x)在(0,+∞)上單調遞增,則f(x)在(-∞,0)上單調遞減;
②函數y=
kx2-6kx+9
的定義域為R,則k的取值范圍是(0,1];
③要得到y=3sin(3x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個單位;
④若函數 f(x)=x3-ax在[1,+∞)上是單調遞增函數,則a的最大值是3.
所有正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則函數y=f(x)-log5|x|的零點個數有
8
8
個.

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)在(-∞,0]上是增函數,且f(-
1
2
)=2
,那么不等式f(sin(2x-
π
3
))<2
[-
π
2
,
π
2
]
上的解集為(  )
A、[-
π
2
,-
π
3
)∪(-
π
4
,
π
12
)∪(
π
6
π
2
]
B、[-
π
2
,-
π
3
)∪(
π
6
,
π
2
]
C、[-
π
2
,-
π
3
)∪(-
π
4
,
π
2
D、[-
π
2
,-
12
)∪(-
π
4
π
12
)∪(
π
4
,
π
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調遞減,則( 。
A、f(2)<f(
1
2
)<f(1)
B、f(1)<f(2)<f(
1
2
)
C、f(
1
2
)<f(2)<f(1)
D、f(1)<f(
1
2
)<f(2)

查看答案和解析>>

同步練習冊答案