【題目】中國古代的數(shù)學(xué)家們最早發(fā)現(xiàn)并應(yīng)用勾股定理,而最先對(duì)勾股定理進(jìn)行證明的是三國時(shí)期的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成一個(gè)大的正方形。若直角三角形的較小銳角的正切值為,現(xiàn)向該正方形區(qū)域內(nèi)投擲-枚飛鏢,則飛鏢落在小正方形內(nèi)(陰影部分)的概率是( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測(cè)量可知邊界萬米,萬米,萬米.
(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地的面積及的長(zhǎng);
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線和橢圓有公共的焦點(diǎn),且離心率為.
(Ⅰ)求雙曲線的方程.
(Ⅱ)經(jīng)過點(diǎn)作直線交雙曲線于, 兩點(diǎn),且為的中點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過底面是矩形的四棱錐FABCD的頂點(diǎn)F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)G在CD上且滿足DG=G.
求證:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形的頂點(diǎn), , , , 為坐標(biāo)原點(diǎn).
()此四邊形是否有外接圓,若有,求出外接圓的方程;若沒有,請(qǐng)說明理由.
()記的外接圓為,過上的點(diǎn)作圓的切線,設(shè)與軸、軸的正半軸分別交于點(diǎn)、,求面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com