(12分)過點Q 作圓C:的切線,切點為D,且QD=4.

(1)求的值;

(2)設P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求的最小值(O為坐標原點).

 

【答案】

(1)    (2)取得最小值為6。

【解析】

試題分析:(1)由題設知,是以D為直角頂點的直角三角形,結(jié)合勾股定理得到r的值。

(2)根據(jù)線與圓相切以及均值不等式和向量的坐標關系得到。

解:(1) 圓C:的圓心為O(0,0),于是

由題設知,是以D為直角頂點的直角三角形,

故有     

(2)設直線的方程為 即

        

直線與圓C相切

         

當且僅當時取到“=”號

取得最小值為6。

考點:本試題主要考查了直線與圓的位置關系的運用。

點評:解決該試題的關鍵是利用線圓相切則有圓心到直線的距離于圓的半徑。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,定義以原點為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“準圓”.已知橢圓C:
x2
a2
+
y2
b2
=1
的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準圓”相切.
(1)求橢圓C的方程;
(2)P為橢圓C的右準線上一點,過點P作橢圓C的“準圓”的切線段PQ,點F為橢圓C的右焦點,求證:|PQ|=|PF|
(3)過點M(-
6
5
,0)
的直線與橢圓C交于A,B兩點,為Q橢圓C的左頂點,是否存在直線l使得△QAB為直角三角形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動圓C與圓C1、C2相外切.
(I)求動圓C圓心軌跡E的方程;
(II)若直線l過點(2,0)且與軌跡E交于P、Q兩點.
①設點M(m,0),問:是否存在實數(shù)m,使得直線l繞點(2,0)無論怎樣轉(zhuǎn)動,都有
MP
MQ
=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
②過P、Q作直線x=
1
2
的垂線PA、QB,垂足分別為A、B,記λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=-1.動圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動圓圓心C的軌跡M的方程;
( II)直線l′與軌跡M相切于第一象限的點P,過點P作直線l'的垂線恰好經(jīng)過點A(0,6),并交軌跡M于異于點P的點Q,記S為△POQ(O為坐標原點)的面積,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=-1.動圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動圓圓心C的軌跡M的方程;
(Ⅱ)斜率為k的直線m與軌跡M相切于第一象限的點P,過點P作直線m的垂線恰好經(jīng)過點A(0,6),并交軌跡M與另一點Q,記S為軌跡M與直線PQ圍成的封閉圖形的面積,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆四川省高二“零診”考試文科數(shù)學試卷(解析版) 題型:解答題

已知圓C1的方程為,定直線l的方程為.動圓C與圓C1外切,且與直線l相切.

(Ⅰ)求動圓圓心C的軌跡M的方程;

(Ⅱ)直線與軌跡M相切于第一象限的點P,過點P作直線的垂線恰好經(jīng)過點A(0,6),并交軌跡M于相異的兩點P、Q,記POQ(O為坐標原點)的面積,求的值.

 

查看答案和解析>>

同步練習冊答案