【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數(shù)f(x)= cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的值域.

【答案】
(1)解:函數(shù)f(x)= cos2x

=cos2xcos ﹣sin2xsin

= ,

由2k ,

可得k ,

單調(diào)遞增區(qū)間為:[k , ];


(2)解:當(dāng)x∈[0, ]時(shí),

可得2 ,

因此sin(2x+ ,

所以函數(shù)f(x)的值域是[


【解析】(1)首先根據(jù) =(1,sinx), =(cos(2x+ ),sinx),求出 ;然后根據(jù)函數(shù)f(x)= cos2x,求出函數(shù)f(x)的解析式;最后根據(jù)正弦函數(shù)的特征,求出其單調(diào)遞增區(qū)間即可;(2)當(dāng)x∈[0, ]時(shí),可得2x ,然后求出函數(shù)f(x)的值域即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3﹣1的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=2n﹣1+an(n∈N*),求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(1)求證:PA∥平面QBC;
(2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差x(℃)

8

11

12

13

10

發(fā)芽數(shù)y(顆)

16

25

26

30

23

設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(注: ,
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時(shí),f(x)=|2x﹣1|,那么當(dāng)x>2時(shí),函數(shù)f(x)的遞減區(qū)間是(
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為的正方形,平面平面, ,

(Ⅰ)求證: 平面

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),關(guān)于的不等式的解集為其中

(1)求的值;

(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求曲線y=x2﹣2x+3與直線y=x+3圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,則導(dǎo)函數(shù)f′(x)是(
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案