一個袋中裝有大小相同的黑球和白球共9個,從中任取3個球,記隨機變量為取出3球中白球的個數(shù),已知
(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量的分布列及其數(shù)學期望.
(1)
(2)

0
1
2
3





 

試題分析:解:(Ⅰ)設袋中有白球個,則,…4分
,解得.                   …7分
(Ⅱ)隨機變量的分布列如下:        …11分

0
1
2
3





 
.                        …14分
點評:解決的關鍵是根據(jù)已知中的排列組合的知識來得到概率的求解,以及結合分布列的性質得到期望,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人進行圍棋比賽,規(guī)定每局勝者得1分,負者得0分,比賽進行到有一方比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為.
(Ⅰ)求的值;
(Ⅱ)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

隨機變量ξ的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(ξ)=,則D(ξ)的值是(  )
(A)      (B)      (C)      (D)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果如下表:
日銷售量(噸)
1
1.5
2
天數(shù)
10
25
15
(1)計算這50天的日平均銷售量;
(2)若以頻率為概率,且每天的銷售量相互獨立.
①求5天中該種商品恰有2天的銷售量為1.5噸的概率;
②已知每噸該商品的銷售利潤為2萬元,X表示該種商品兩天銷售利潤的和,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某人從標有1、2、3、4的四張卡片中任意抽取兩張.約定如下:如果出現(xiàn)兩個偶數(shù)或兩個奇數(shù),就將兩數(shù)相加的和記為;如果出現(xiàn)一奇一偶,則將它們的差的絕對值記為,則隨機變量的數(shù)學期望為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量ξ只能取5,6,7,……,16這12個值,且取每一個值的概率均相等,則P(ξ>8)=         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
有編號為l,2,3,…,個學生,入坐編號為1,2,3,…,個座位.每個學生規(guī)定坐一個座位,設學生所坐的座位號與該生的編號不同的學生人數(shù)為,已知時,共有6種坐法.
(1)求的值;
(2)求隨機變量的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知隨機變量X的分布列如右表,則=(    )
A.0.4B.1.2C.1.6D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲同學在軍訓中,練習射擊項目,他射擊命中目標的概率是,假設每次射擊是否命中相互之間沒有影響.
(Ⅰ)在3次射擊中,求甲至少有1次命中目標的概率;
(Ⅱ)在射擊中,若甲命中目標,則停止射擊,否則繼續(xù)射擊,直至命中目標,但射擊次數(shù)最多不超過3次,求甲射擊次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案