在空間平移正△ABC到△A1B1C1得到如圖所示的幾何體,若D是AC的中點(diǎn),AA1⊥平面ABC,AA1:AB=
2
:1,則異面直線AB1與BD所成的角是
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:根據(jù)異面直線所成角的定義先求出平面角,即可得到結(jié)論.
解答: 解:取A1C1的中點(diǎn)E,則B1E∥BD,
即直線AB1與B1E所成的角即為異面直線AB1與BD所成的角,
∵AA1:AB=
2
:1,
∴設(shè)AB=1,則AA1B=
2

∵AA1⊥平面ABC,∴AA1⊥B1E,
在△A1B1C1中,C1A1⊥B1E,
∴B1E⊥平面ACC1A1
∵AE?平面ACC1A1,
∴B1E⊥AE,
即△AEB1為直角三角形,
則B1E=
3
2
,AB1=
3
,
則sin∠EAB1=
B1E
AB1
=
1
2
,
即∠EAB1=30°
故答案為:30°
點(diǎn)評(píng):本題主要考查異面直線所成角的求解,利用直線平行的性質(zhì)找出二面角的平面角是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2c,若直線y=x-c與橢圓C在第一象限內(nèi)的一個(gè)交點(diǎn)M滿足∠F1MF2=2∠MF1F2,則該橢圓的離心率為( 。
A、
6
-
3
B、
3
2
C、
6
-
3
2
D、
6
-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,1),
b
=(-1,3),
c
=(1,2),求
p
=2
a
+3
b
+
c
,并用基底
a
,
b
表示
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且過(guò)點(diǎn)(-
2
,  
2
2
)

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l與橢圓C相交于A、B兩點(diǎn),且|
OA
+
OB
| = |
AB
|,求弦AB長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=log0.20.3,b=log0.30.2,c=log0.30.1,則a,b,c的大小關(guān)系為( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<π,0<β<π.
(1)求證:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
a
-k
b
的長(zhǎng)度相等,求證:tanα•tanβ=-1(k為非零常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,an>0,Sn是它前n項(xiàng)的和,且4Sn=(an+1)2,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an} 的公差不為零,a1=1,且a2,a5,a14成等比數(shù)列            
(Ⅰ)求{an} 通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 an+2n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲和乙兩人約定凌晨在九龍廣場(chǎng)噴水池旁見(jiàn)面,約定誰(shuí)先到后必須等10分鐘,這時(shí)若另一人還沒(méi)有來(lái)就可以離開(kāi).假設(shè)甲在0點(diǎn)到1點(diǎn)內(nèi)到達(dá),且何時(shí)到達(dá)是等可能的,
(1)如果乙是0:40分到達(dá),求他們能會(huì)面的概率;
(2)如果乙在0點(diǎn)到1點(diǎn)內(nèi)到達(dá),且何時(shí)到達(dá)是等可能的,求他們能會(huì)面的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案