已知A={x||x-a|≥4},B={x|x2-4x+3<0},p是A中x滿足的條件,q是B中x滿足的條件.
(1)求¬p中x滿足的條件.
(2)若¬p是q的必要條件,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)解絕對(duì)值不等式求得A,解一元二次不等式求得B,則=C即為所求.
(2)若¬p是q的必要條件,則B⊆C,故有 ,由此解得實(shí)數(shù)a的取值范圍.
解答:解:(1)由于已知A={x||x-a|≥4}={x|x-a≥4,或 x-a≤-4}={x|x≥a+4,或 x≤a-4},
B={x|x2-4x+3<0}={x|(x-1)(x-3)<0}={x|1<x<3},
p是A中x滿足的條件,q是B中x滿足的條件,
∴¬p中x滿足的條件是 C={x|a-4<x<a+4}.
(2)若¬p是q的必要條件,則B⊆C,
,解得-1≤a≤5,即實(shí)數(shù)a的取值范圍為[-1,5].
點(diǎn)評(píng):本題主要考查充分條件、必要條件、充要條件的定義,絕對(duì)值不等式、一元二次不等式的解法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案