(本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為),點(diǎn)M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),,求⊙的半徑。
(Ⅰ)   (Ⅱ)  
(1)∵橢圓E: 經(jīng)過M(-2,) ,一個(gè)焦點(diǎn)坐標(biāo)為),∴ ,橢圓E的方程為; ………5分
(2)當(dāng)⊙的切線斜率存在時(shí),設(shè)⊙的切線方程為
,
設(shè),則
,∴,即,
,即,∵直線為⊙的一條切線,∴圓的半徑,即,
經(jīng)檢驗(yàn),當(dāng)⊙的切線斜率不存在時(shí)也成立.∴.…14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1)求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn),并與軌跡交于兩點(diǎn),且滿足
?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程為:
(1)若曲線是橢圓,求的取值范圍;
(2)若曲線是雙曲線,且有一條漸近線的傾斜角為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)一束光線從點(diǎn)出發(fā),經(jīng)直線l:上一點(diǎn)反射后,恰好穿過點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)求以、為焦點(diǎn)且過點(diǎn)的橢圓的方程; (3)設(shè)點(diǎn)是橢圓上除長(zhǎng)軸兩端點(diǎn)外的任意一點(diǎn),試問在軸上是否存在兩定點(diǎn)、,使得直線的斜率之積為定值?若存在,請(qǐng)求出定值,并求出所有滿足條件的定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)作直線與曲線交于兩點(diǎn),若,求直線的方程;
(Ⅲ)設(shè)為曲線在第一象限內(nèi)的一點(diǎn),曲線處的切線與軸分別交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線M的中心在原點(diǎn),并以橢圓的焦點(diǎn)為焦點(diǎn),以拋物線的準(zhǔn)線為右準(zhǔn)線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設(shè)直線 與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).
① 當(dāng)為何值時(shí),使得?
② 是否存在這樣的實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以O(shè)為原點(diǎn),所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。
(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時(shí)橢圓的方程;
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓 (a>b>0)的左頂點(diǎn)為A,若橢圓上存在一點(diǎn)P,使∠OPA= (O為原點(diǎn)),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點(diǎn),則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案