設F1,F(xiàn)2分別是橢圓數(shù)學公式(a>b>0)的左、右焦點,若在其右準線上存在P,使線段PF1的中垂線過點F2,則橢圓離心率的取值范圍是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:根據(jù)題意,設P的坐標為,進而可得F1P的中點Q的坐標,結(jié)合題意,線段PF1的中垂線過點F2,可得y與b、c的關(guān)系,又由y2的范圍,計算可得答案.
解答:由已知P,所以F1P的中點Q的坐標為,


時,不存在,
此時F2為中點,
綜上得
故選D.
點評:本題考查橢圓的性質(zhì)的應用,要牢記橢圓的有關(guān)參數(shù),如a、b、c之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,P是其右準線上縱坐標為
3
c
(c為半焦距)的點,且|F1F2|=|F2P|,則橢圓的離心率是( 。
A、
3
-1
2
B、
1
2
C、
5
-1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設F1、F2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦點.
(I)當p∈C,且
pF1
pF
2
=0
|
pF1
|•|
pF
2
|=4
時,求橢圓C的左、右焦點F1、F2的坐標.
(II)F1、F2是(I)中的橢圓的左、右焦點,已知F2的半徑是1,過動點Q作的切線QM(M為切點),使得|QF1|=
2
|QM|
,求動點Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,與直線y=b相切的⊙F2交橢圓于E,且E是直線EF1與⊙F2的切點,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P是C上的一個動點,且|PF1|+|PF2|=4,C的離心率為
1
2

(Ⅰ)求C方程;
(Ⅱ)是否存在過點F2且斜率存在的直線l與橢圓交于不同的兩點C、D,使得|F1C|=|F1D|.若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓
x2
9
+y2=1
的左、右焦點.若點P在橢圓上,且
PF1
PF2
=0
,則|
PF1
+
PF2
|
=( 。

查看答案和解析>>

同步練習冊答案