我縣有甲,乙兩家乒乓球俱樂(lè)部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同.甲家每張球臺(tái)每小時(shí)5元;乙家按月計(jì)費(fèi),一個(gè)月中30小時(shí)以內(nèi)(含30小時(shí))每張球臺(tái)90元,超過(guò)30小時(shí)的部分每張球臺(tái)每小時(shí)2元.小張準(zhǔn)備下個(gè)月從這兩家中的一家租一張球臺(tái)開(kāi)展活動(dòng),其活動(dòng)時(shí)間不少于15小時(shí),也不超過(guò)40小時(shí).
(1)設(shè)在甲家租一張球臺(tái)開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為f(x)元(15≤x≤40),在乙家租一張球臺(tái)開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為g(x)元(15≤x≤40).試求f(x)和g(x);
(2)問(wèn):小張選擇哪家比較合算?為什么?
(1)f(x)=5x,(15≤x≤40)(3分)
g(x)=
90,(15≤x≤30)
2x+30,(30<x≤40)
(6分)
(2)由f(x)=g(x)得
15≤x≤30
5x=90
30<x≤40
5x=2x+30

即x=18或x=10(舍)
當(dāng)15≤x<18時(shí),f(x)-g(x)=5x-90<0,
∴f(x)<g(x)即選甲家
當(dāng)x=18時(shí),f(x)=g(x)即選甲家也可以選乙家
當(dāng)18<x≤30時(shí),f(x)-g(x)=5x-90>0,
∴f(x)>g(x)即選乙家.(8分)
當(dāng)30<x≤40時(shí),f(x)-g(x)=5x-(2x+30)=3x-30>0,
∴f(x)>g(x)即選乙家.(10分)
綜上所述:當(dāng)15≤x<18時(shí),選甲家;
當(dāng)x=18時(shí),選甲家也可以選乙家;
當(dāng)18<x≤40時(shí),選乙家.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.y=-x2+2xB.y=x3C.y=2-x+1D.y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=lg(2x-1)的定義域?yàn)開(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一個(gè)公益廣告說(shuō):“若不注意節(jié)約用水,那么若干年后,最有一滴水只能是我們的眼淚.”我國(guó)是水資源匱乏的國(guó)家.為鼓勵(lì)節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)政策措施,規(guī)定:每一季度每人用水量不超過(guò)5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元;若超過(guò)5噸而不超過(guò)6噸時(shí),超過(guò)部分的水費(fèi)加收200%;若超過(guò)6噸而不超過(guò)7噸時(shí),超過(guò)部分的水費(fèi)加收400%.設(shè)某人本季度實(shí)際用水量為x(0≤x≤7)噸,應(yīng)交水費(fèi)為f(x),
(1)求f(4)、f(5.5)、f(6.5)的值;
(2)試求出函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若a=212,b=(
1
2
-0.8,c=log54,則a,b,c的大小關(guān)系為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知α,β為銳角且α+β>
π
2
,x∈R,f(x)=(
cosα
sinβ
)|x|+(
cosβ
sinα
)|x|
,下列說(shuō)法正確的是( 。
A.f(x)在定義域上為遞增函數(shù)
B.f(x)在定義域上為遞減函數(shù)
C.f(x)在(-∞,0]上為增函數(shù),在(0,+∞)上為減函數(shù)
D.f(x)在(-∞,0]上為減函數(shù),在(0,+∞)上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為1m的正方形鐵皮的四角切去邊長(zhǎng)為x的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長(zhǎng)的比值不超過(guò)正常數(shù)c,求V的最大值,并寫(xiě)出相應(yīng)的x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某市2000年底人口為100萬(wàn),人均住房面積為5平方米,如果該市每年人口平均增長(zhǎng)為2%,到2001年底新增住房面積10萬(wàn)平方米,以后每年新增住房面積比前一年新增住房面積多10萬(wàn)平方米,試問(wèn)到2010年底,該市人均住房面積為多少平方米?(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

農(nóng)民收入由工資性收入和其他收入兩部分構(gòu)成.2006年某地區(qū)農(nóng)民人均收入為3150元(其中工資性收入為1800元,其它收入為1350元),預(yù)計(jì)該地區(qū)自2007年起的5年內(nèi),農(nóng)民的工資性收入將以每年6%的年增長(zhǎng)率增長(zhǎng),其它收入每年增加160元,根據(jù)以上數(shù)據(jù),2011年該地區(qū)農(nóng)民人均收入介于
(注:當(dāng)0<x<1時(shí),(1+x)n≈1+nx,要求精度不高時(shí)可用它估值)
[     ]
A.4200元~4400元
B.4400元~4600元
C.4600元~4800元
D.4800元~5000元

查看答案和解析>>

同步練習(xí)冊(cè)答案