年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省高三第一次月考數(shù)學(xué)卷 題型:解答題
(理)已知圓直線
(I)求證:對,直線與總有兩個不同的交點;
(II)設(shè)與交于兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市長河高三市二測?紨(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖所示,已知直線的斜率為且過點,拋物線, 直線與拋物線有兩個不同的交點, 是拋物線的焦點,點為拋物線內(nèi)一定點,點為拋物線上一動點.
(1)求的最小值;
(2)求的取值范圍;
(3)若為坐標(biāo)原點,問是否存在點,使過點的動直線與拋物線交于兩點,且以為直徑的圓恰過坐標(biāo)原點, 若存在,求出動點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓直線
(1)求證:對任意實數(shù),直線與圓與總有兩個不同的公共點;
(2)設(shè)直線與圓交與兩點,且定點分弦為,求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,已知直線的斜率為且過點,拋物線, 直線與拋物線有兩個不同的交點, 是拋物線的焦點,點為拋物線內(nèi)一定點,點為拋物線上一動點.
(1)求的最小值;
(2)求的取值范圍;
(3)若為坐標(biāo)原點,問是否存在點,使過點的動直線與拋物線交于兩點,且以為直徑的圓恰過坐標(biāo)原點, 若存在,求出動點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com