【題目】下列各組中的函數(shù)f(x),g(x)表示同一函數(shù)的是(
A.f(x)=x,g(x)=
B.f(x)=x+1,g(x)=
C.f(x)=|x|,g(x)=
D.f(x)=log22x , g(x)=2log2x

【答案】C
【解析】解:A.f(x)的定義域為R,而g(x)的定義域為(0,+∞),所以定義域不同,所以A不是同一函數(shù).

B.f(x)的定義域為R,而g(x)= =x+1,(x≠1),則g(x)的定義域為(﹣∞,1)∪(1,+∞),所以定義域不同,所以B不是同一函數(shù).

C.因為g(x)=|x|,所以兩個函數(shù)的定義域和對應(yīng)法則一致,所以C表示同一函數(shù).

D.f(x))=log22x=x,則f(x)的定義域為R,而g(x)的定義域為(0,+∞),所以定義域不同,所以D不是同一函數(shù).

故選:C.

【考點(diǎn)精析】關(guān)于本題考查的判斷兩個函數(shù)是否為同一函數(shù),需要了解只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動點(diǎn),則直線CM與平面BC1D所成角的正弦值的取值范圍是
③若P,Q是線段AC上的動點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為
其中,正確結(jié)論的個數(shù)是(

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域為[0,2 +1],求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對任意的正實數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實數(shù)m的取值范圍為(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某段路程中的行駛速率與時間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說明所求面積的實際含義;
(2)假設(shè)這輛汽車在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車在行駛這段路程時里程表讀數(shù)s(km)與時間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象(
A.向左移動 個單位
B.向右移動 個單位
C.向左移動1個單位
D.向右移動1個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an1﹣an}{n∈N*}是公差為2的等差數(shù)列.
(1)求{an}的通項公式;
(2)記數(shù)列{ }的前n項和為Sn , 求滿足不等式Sn 的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點(diǎn),若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案