【題目】xOy中,曲線的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線,.

1)把的參數(shù)方程化為極坐標(biāo)方程;

2)設(shè)分別交,于點(diǎn)PQ,求的面積.

【答案】1;(2

【解析】

(1) 首先利用對(duì)曲線的參數(shù)方程((為參數(shù))進(jìn)行消參數(shù)運(yùn)算,化為普通方程,再根據(jù)普通方程化極坐標(biāo)方程的公式得到曲線的極坐標(biāo)方程.

(2)設(shè)點(diǎn)的極坐標(biāo)分別為,由,坐標(biāo)代入即可求出,因?yàn)辄c(diǎn)到曲線的距離為,借助即可求得.

1)曲線的普通方程為,即,

所以的極坐標(biāo)方程為,即.

2)方法一:依題意,設(shè)點(diǎn)P,Q的極坐標(biāo)分別為,.

代入,得

代入,得

所以,

點(diǎn)到曲線)的距離.

所以.

方法二:依題意,設(shè)點(diǎn)P,Q的極坐標(biāo)分別為.

代入,得,得,

代入,得,即.

因?yàn)?/span>,所以,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述錯(cuò)誤的是( ).

A.若事件發(fā)生的概率為,則

B.互斥事件不一定是對(duì)立事件,但是對(duì)立事件一定是互斥事件

C.某事件發(fā)生的概率是隨著試驗(yàn)次數(shù)的變化而變化的

D.5張獎(jiǎng)券中有一張有獎(jiǎng),甲先抽,乙后抽,則乙與甲中獎(jiǎng)的可能性相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若在點(diǎn)處的切線與直線平行,討論的單調(diào)性;

2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p在區(qū)間上存在單調(diào)遞減區(qū)間;命題q:函數(shù),且有三個(gè)實(shí)根.為真命題,則實(shí)數(shù)的取值范圍是:(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E1(ab0)的離心率是,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于AB兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長為2.

1)求橢圓E的方程;

2)在平面直角坐標(biāo)系xOy中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著甜品的不斷創(chuàng)新,現(xiàn)在的甜品無論是造型還是口感都十分誘人,有顏值、有口味、有趣味的產(chǎn)品更容易得到甜品愛好者的喜歡,創(chuàng)新已經(jīng)成為烘焙作品的衡量標(biāo)準(zhǔn).網(wǎng)紅甜品店生產(chǎn)有幾種甜品,由于口味獨(dú)特,受到越來越多人的喜愛,好多外地的游客專門到該甜品店來品嘗打卡,已知該甜品店同一種甜品售價(jià)相同,該店為了了解每個(gè)種類的甜品銷售情況,專門收集了該店這個(gè)月里五種網(wǎng)紅甜品的銷售情況,統(tǒng)計(jì)后得如下表格:

甜品種類

A甜品

B甜品

C甜品

D甜品

E甜品

銷售總額(萬元)

10

5

20

20

12

銷售額(千份)

5

2

10

5

8

利潤率

0.4

0.2

0.15

0.25

0.2

(利潤率是指:一份甜品的銷售價(jià)格減去成本得到的利潤與該甜品的銷售價(jià)格的比值.

1)從該甜品店本月賣出的甜品中隨機(jī)選一份,求這份甜品的利潤率高于0.2的概率;

2)假設(shè)每類甜品利潤率不變,銷售一份A甜品獲利元,銷售一份B甜品獲利元,,銷售一份E甜品獲利元,設(shè),若該甜品店從五種網(wǎng)紅甜品中隨機(jī)賣出2種不同的甜品,求至少有一種甜品獲利超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,,,,平面平面

1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx=ax3+bx2+cxa≠0)在x=±1時(shí)取得極值,且f1=1

1)試求常數(shù)a、b、c的值;

2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,其前項(xiàng)和為,滿足,其中,,.

⑴若,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案