若(x+1)n=xn+…+px2+qx+1(n∈N*),且p+q=6,那么n=   
【答案】分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為2,1求出p,q代入解得.
解答:解:(x+1)n展開(kāi)式的通項(xiàng)為Tr+1=Cnrxr
令r=2得p=Cn2
令r=1得q=Cn1
∵p+q=6
∴Cn2+Cn1=6
故答案為3
點(diǎn)評(píng):本題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),且a:b=3:1,那么n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、若(x+1)n=xn+…+ax3+bx2+…+1,且a=669b,則n=
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、若(x+1)n=xn+…+px2+qx+1(n∈N*),且p+q=6,那么n=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+1)n=xn+…+ax3+bx2+…+1,且a=3b,則n=
11
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)條件
0≤x≤1
0≤y≤1
x+y≤
3
2
下,函數(shù)p=log
2
5
(2x+y)
的最小值為
-1
-1

(理)若(x+1)n=xn+…+ax3+bx2+…+1,(n∈N*),且a:b=3:1,則n=
11
11

查看答案和解析>>

同步練習(xí)冊(cè)答案