已知函f(x)=x3+ax2+bx+5,若x=
23
,y=f(x) 有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.
分析:(1)對其進(jìn)行求導(dǎo),根據(jù)題意曲線y=f(x)在點(1,f(1))處的切線斜率為3,可得f′(1)=3,若x=
2
3
,y=f(x) 有極值可f′(
2
3
)=0,由此可以求出f(x)的解析式;
(2)對f(x)進(jìn)行求導(dǎo),解出其極值點,利用導(dǎo)數(shù)研究其單調(diào)性,從而也可以利用導(dǎo)數(shù)研究函數(shù)的最值問題;
(3)函數(shù)y=f(x)-m有三個零點,可以轉(zhuǎn)化為y=f(x)與y=m交于3點,利用數(shù)形結(jié)合的方法進(jìn)行求解,求出m的取值范圍;
解答:解:(1)f′(x)=3x2+2ax+b,…(1分)
由題意,得
f′(
2
3
)=3×(
2
3
)
2
+2a×
2
3
+b=0
f′(1)=3×12+2a×1+b=3
,解得
a=2
b=-4
;
所以,f(x)=x3+2x2-4x+5,…(4分)
(2)由(1)知f(x)=3x3+4x-4=(x+2)(3x-2),
令f′(x)=0,得x1=-2,x2=
2
3
;           …(5分)
x -4 (-4,-2) -2 (-2,
2
3
2
3
2
3
,1)
1
f′(x) + 0 - 0 +
f(x) 極大值 極小值
函數(shù)值 -11 13
95
27
4
…(8分)
∴f(x)在[-4,-1]上的最大值為13,最小值為-11.…(9分)
(3)∵函數(shù)y=f(x)-m有三個零點,即f(x)=m,有三個交點,
可得f(x)的圖象:如下圖:

由上圖y=m與函數(shù)f(x)有三個交點,
∴4<m<13,-11<m<
95
27
,此時y=m與f(x)交于三點;
∴4<m<13 或-11<m<
95
27
;
點評:此題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值問題,難度比較大,利用數(shù)形結(jié)合的方法進(jìn)行求解會比較簡單,這也是高考的熱點問題,是一道難題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽一中高三(上)12月月考數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=,y=f(x) 有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002-2013學(xué)年江蘇省泰州二中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=,y=f(x) 有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽一中高三(上)12月月考數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=,y=f(x) 有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案