分析 (Ⅰ)利用橢圓焦點和橢圓定義,求出a,b,由此能求出橢圓C的方程.
(Ⅱ)設(shè)存在符合題意的直線l,其方程為y=$\frac{3}{2}x+t$,與橢圓聯(lián)立,得3x2+3tx+t2-12=0,由此利用根的判別式、點到直線的距離公式,能求出結(jié)果方程.
解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$過點A(2,3),且F(2,0)為其右焦點,
∴橢圓C的左焦點為F′(-2,0),則|AF|=3,|AF′|=$\sqrt{(-2-2)^{2}+(0-3)^{2}}$=5,
∴$\left\{\begin{array}{l}{c=2}\\{2a=3+5}\end{array}\right.$,即$\left\{\begin{array}{l}{c=2}\\{a=4}\end{array}\right.$,∴b2=16-4=12,
∴橢圓C的方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
(Ⅱ)設(shè)存在符合題意的直線l,其方程為y=$\frac{3}{2}x+t$,
由$\left\{\begin{array}{l}{y=\frac{3}{2}x+t}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理,得3x2+3tx+t2-12=0,
∵直線l與橢圓C有公共點,
∴△=(3t)2-12(t2-12)=-3t2+144≥0,
解得-4$\sqrt{3}≤t≤4\sqrt{3}$,
∵直線OA與l的距離等于$\frac{10\sqrt{13}}{13}$,∴$\frac{|2t|}{\sqrt{9+4}}$=$\frac{10\sqrt{13}}{13}$,故t=±5.
∵±5∈[-4$\sqrt{3}$,4$\sqrt{3}$],
∴直線l的方程為y=$\frac{3}{2}x-5$或y=$\frac{3}{2}x+5$.
點評 本題考查橢圓方程和直線方程的求法,是中檔題,解題時要認真審題,注意橢圓定義、根的判別式、點到直線的距離公式的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{5}{6}$ | C. | $\frac{6}{7}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1或3 | B. | $\sqrt{3}$ | C. | -1或4 | D. | 3或4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com