(2012•江西)已知數(shù)列{an}的前n項(xiàng)和Sn=kcn-k(其中c,k為常數(shù)),且a2=4,a6=8a3
(1)求an
(2)求數(shù)列{nan}的前n項(xiàng)和Tn
分析:(1)先根據(jù)前n項(xiàng)和求出數(shù)列的通項(xiàng)表達(dá)式;再結(jié)合a2=4,a6=8a3求出c,k,即可求出數(shù)列的通項(xiàng);
(2)直接利用錯(cuò)位相減法求和即可.
解答:解:(1)由Sn=kcn-k,得an=sn-sn-1=kcn-kcn-1;   (n≥2),
由a2=4,a6=8a3.得kc(c-1)=4,kc5(c-1)=8kc2(c-1),解得
c=2
k=2
;
所以a1=s1=2;
an=sn-sn-1=kcn-kcn-1=2n,(n≥2),
于是an=2n
(2):∵nan=n•2n;
∴Tn=2+2•22+3•23+…+n•2n
  2Tn=22+2•23+3•24+…+(n-1)•2n+n•2n+1;
∴-Tn=2+22+23…+2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1=-2+2n+1-n•2n+1;
即:Tn=(n-1)•2n+1+2.
點(diǎn)評(píng):本題主要考察數(shù)列求和的錯(cuò)位相減法.?dāng)?shù)列求和的錯(cuò)位相減法適用于一等差數(shù)列乘一等比數(shù)列組合而成的新數(shù)列.?dāng)?shù)列求和的錯(cuò)位相減法也是這幾年高考的?键c(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)如圖,已知正四棱錐S-ABCD所有棱長(zhǎng)都為1,點(diǎn)E是側(cè)棱SC上一動(dòng)點(diǎn),過(guò)點(diǎn)E垂直于SC的截面將正四棱錐分成上、下兩部分.記SE=x(0<x<1),截面下面部分的體積為V(x),則函數(shù)y=V(x)的圖象大致為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知f(x)=sin2(x+
π
4
),若a=f(lg5),b=f(lg
1
5
),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減且滿(mǎn)足f(0)=1,f(1)=0.
(1)求a取值范圍;
(2)設(shè)g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線(xiàn)C上任意一點(diǎn)M(x,y)滿(mǎn)足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲線(xiàn)C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線(xiàn)C上,曲線(xiàn)C在點(diǎn)Q處的切線(xiàn)為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線(xiàn)C上任意一點(diǎn)M(x,y)滿(mǎn)足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲線(xiàn)C的方程;
(2)點(diǎn)Q(x0,y0)(-2<x0<2)是曲線(xiàn)C上動(dòng)點(diǎn),曲線(xiàn)C在點(diǎn)Q處的切線(xiàn)為l,點(diǎn)P的坐標(biāo)是(0,-1),l與PA,PB分別交于點(diǎn)D,E,求△QAB與△PDE的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案