【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:,. 參考數(shù)據(jù):

【答案】(1)(2)7.72萬噸

【解析】

(1)本題首先可以通過表格計算出以及,然后計算出的值,再通過計算出以及計算出的值,最后即可得出關(guān)于的線性回歸方程,

(2)直接將2019年所對應(yīng)的年份代碼帶入線性回歸方程即可得出結(jié)果。

(1)由題意可知:,,

所以,

所以關(guān)于的線性回歸方程為

(2)由(1)可得,當(dāng)年份為2019年時,年份代碼,此時,所以,可預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量約為萬噸。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖一,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點,且該四棱錐的俯視圖和側(cè)視圖如圖二所示.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)是偶函數(shù),設(shè)

(1)求的解析式;

(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD底面ABCD是直角梯形,ABCD,DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形.

()證明:ADPB;

()若四棱錐P-ABCD的體積等于,平面CMN∥平面PAD,且分別交PB,AB于點M,N,試確定M,N的位置,并求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點上,點上,且點在斜邊上,已知 米, 米, .設(shè)矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))

(1)試用表示,并求的取值范圍;

(2)求總造價關(guān)于面積的函數(shù);

(3)如何選取,使總造價最低(不要求求出最低造價)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , , 分別是棱 , , 的中點,點, 分別在棱 上移動,且.

(1)當(dāng)時,證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),.

(1)證明:不論為何實數(shù),f(x)均為增函數(shù);

(2)試確定的值,使f(-x)+ f(x)=0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.

1)求實數(shù)a,b的值;

2)設(shè),若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;

3)設(shè)),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列不等式的證法,再解決后面的問題:

已知,,求證:.

證明:構(gòu)造函數(shù),

.

因為對一切,恒有

所以,從而得.

1)若,,請寫出上述結(jié)論的推廣式;

2)參考上述證法,對你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊答案