如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=數(shù)學公式
(1)求四棱錐S-ABCD的體積;
(2)求證:面SAB⊥面SBC;
(3)求SC與底面ABCD所成角的正切值.

(1)解:∵底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,
SA⊥面ABCD,SA=AB=BC=1,AD=
∴四棱錐S-ABCD的體積:
V==
==
(2)證明:∵SA⊥面ABCD,BC?面ABCD,
∴SA⊥BC,
∵AB⊥BC,SA∩AB=A,
∴BC⊥面SAB
∵BC?面SAB
∴面SAB⊥面SBC.
(3)解:連接AC,
∵SA⊥面ABCD,
∴∠SCA 就是SC與底面ABCD所成的角.
在三角形SCA中,
∵SA=1,AC=
.…10分
分析:(1)由題設條四棱錐S-ABCD的體積:V==,由此能求出結果.
(2)由SA⊥面ABCD,知SA⊥BC,由AB⊥BC,BC⊥面SAB,由此能夠證明面SAB⊥面SBC.
(3)連接AC,知∠SCA 就是SC與底面ABCD所成的角.由此能求出 SC與底面ABCD所成角的正切值.
點評:本題考查棱錐的體積的求法,面面垂直的證明和直線與平面所成角的正切值的求法.解題時要認真審題,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在底面是直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
5
5
,又PA⊥平面ABCD,AD=3AB=3PA=3a,
(I)求二面角P-CD-A的正切值;
(II)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12

(1)求四棱錐S-ABCD的體積;
(2)求證:面SAB⊥面SBC;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐    P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M為PD中點.
( I ) 求證:MC∥平面PAB;
(Ⅱ)在棱PD上找一點Q,使二面角Q-AC-D的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,已知∠ABC=90°,SA⊥平面ABCD,AB=BC=2,AD=1.
(1)當SA=2時,求直線SA與平面SCD所成角的正弦值;
(2)若平面SCD與平面SAB所成角的余弦值為
49
,求SA的長.

查看答案和解析>>

同步練習冊答案