【題目】某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生七不準(zhǔn),一日三省十問(wèn)等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查卷共有10個(gè)問(wèn)題,每個(gè)問(wèn)題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組 ,,,,,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的、的值;

(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會(huì),求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

【答案】(1)50,0.030,0.004(2)

【解析】

試題分析:(1)由頻率分布直方圖和莖葉圖可分別得到內(nèi)的頻率和頻數(shù),進(jìn)而求得樣本容量,在此基礎(chǔ)上可得到x,y值;(2)分?jǐn)?shù)在70分以下的學(xué)生共5人,確定抽取兩人的方法種數(shù)及恰有一人得分在內(nèi)的方法種數(shù),求其比值可得到相應(yīng)的概率值

試題解析:(1)由題意可知,樣本容量,

,

.

(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有5人,記這5人分別為,,,,

,分?jǐn)?shù)在內(nèi)的學(xué)生有2人,記這2人分別為,.抽取的2名學(xué)生的所有情況有21種,分別為:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,).

其中2名同學(xué)的分?jǐn)?shù)恰有一人在內(nèi)的情況有10種,

所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是_______(填序號(hào))

命題的否定是;

若一個(gè)命題的逆命題為真命題,則它的否命題也一定為真命題;

已知, ,若命題為真命題,則的取值范圍是;

④“成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 的方程為,點(diǎn)的坐標(biāo)為.

)求過(guò)點(diǎn)且與直線平行的直線方程;

)求過(guò)點(diǎn)且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)盒子里裝有6張卡片,上面分別寫(xiě)著如下定義域?yàn)?/span>的函數(shù):

,,,,,

1現(xiàn)在從盒子中任意取兩張卡片,記事件這兩張卡片上函數(shù)相加,所得新函數(shù)是奇函數(shù),求事件的概率;

2從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是偶函數(shù)則停止抽取,否則繼續(xù)進(jìn)行,記停止時(shí)抽取次數(shù)為,寫(xiě)出的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,處的切線與直線平行.

1討論的單調(diào)性;

2,上恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

若函數(shù)圖象在點(diǎn)處的切線方程為,求的值;

求函數(shù)的極值;

,,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的短軸長(zhǎng)為,點(diǎn)在C上,平行于OM的直線交橢圓C于不同的兩點(diǎn)A,B.

1求橢圓的方程;

2證明:直線MA,MB與軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,其中的中點(diǎn).

(1)求證:;

(2)求證:面;

(3)求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案