【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線的普通方程和曲線的極坐標(biāo)方程;

2)射線與曲線交于,兩點,射線與曲線交于點,若的面積為1,求的值.

【答案】1;(2.

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)利用極坐標(biāo)的概念和三角函數(shù)關(guān)系式的恒等變換及正弦型函數(shù)的性質(zhì)的應(yīng)用及三角形的面積公式的應(yīng)用求出結(jié)果.

1)曲線參數(shù)方程為,消去參數(shù),直角坐標(biāo)方程為:.

曲線的參數(shù)方程為為參數(shù)),消去參數(shù),

,根據(jù),得曲線的極坐標(biāo)方程為.

2)由曲線的極坐標(biāo)方程為,

設(shè)點

直線的極坐標(biāo)方程為,可得點,

,

,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新冠病毒肆虐全球的大災(zāi)難面前,中國全民抗疫,眾志成城,取得了階段性勝利,為世界彰顯了榜樣力量.為慶祝戰(zhàn)疫成功并且盡快恢復(fù)經(jīng)濟(jì),某網(wǎng)絡(luò)平臺的商家進(jìn)行有獎促銷活動,顧客購物消費(fèi)每滿600元,可選擇直接返回60元現(xiàn)金或參加一次答題返現(xiàn),答題返現(xiàn)規(guī)則如下:電腦從題庫中隨機(jī)選出一題目讓顧客限時作答,假設(shè)顧客答對的概率都是0.4,若答對題目就可獲得120元返現(xiàn)獎勵,若答錯,則沒有返現(xiàn).假設(shè)顧客答題的結(jié)果相互獨(dú)立.

1)若某顧客購物消費(fèi)1800元,作為網(wǎng)絡(luò)平臺的商家,通過返現(xiàn)的期望進(jìn)行判斷,是希望顧客直接選擇返回180元現(xiàn)金,還是選擇參加3次答題返現(xiàn)?

2)若某顧客購物消費(fèi)7200元并且都選擇參加答題返現(xiàn),請計算該顧客答對多少次概率最大,最有可能返回多少現(xiàn)金?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點為P,當(dāng)k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)已知常數(shù)解關(guān)于的不等式

(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年湖北抗擊新冠肺炎期間,全國各地醫(yī)護(hù)人員主動請纓,支援湖北.某地有3名醫(yī)生,6名護(hù)士來到武漢,他們被隨機(jī)分到3家醫(yī)院,每家醫(yī)院1名醫(yī)生、2名護(hù)士,則醫(yī)生甲和護(hù)士乙分到同一家醫(yī)院的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________

查看答案和解析>>

同步練習(xí)冊答案