(本題滿分14分)
已知橢圓
的離心率為
,長軸長為
,直線
交橢圓于不同的兩點A、B。
(1)求橢圓的方程;
(2)求
的值(O點為坐標(biāo)原點);
(3)若坐標(biāo)原點O到直線
的距離為
,求
面積的最大值。
(1)設(shè)橢圓的半焦距為c,
依題意
解得
由
2分
所求橢圓方程為
3分
(2)
設(shè)
,
其坐標(biāo)滿足方程
消去
并整理得
4分
則
(*) 5分
故
6分
經(jīng)檢驗
滿足式(*)式 8分
(3)由已知
,
可得
9分
將
代入橢圓方程,
整理得
10分
11分
12分
當(dāng)且僅當(dāng)
,
即
時等號成立,
經(jīng)檢驗,
滿足(*)式
當(dāng)
時,
綜上可知
13分
當(dāng)|AB最大時,
的面積最大值
14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在坐標(biāo)原點,焦點在
軸上的橢圓經(jīng)過點M(1,
),斜率為
的直線經(jīng)過橢圓的下頂點D和右焦點F,A、B為橢圓上不同于M的兩點。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線AB過點F且不與坐標(biāo)軸垂直,求線段AB的中垂線與
軸的交點的橫坐標(biāo)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
(
)的離心率為
,且短軸長為2.
(1)求橢圓的方程;
(2)若與兩坐標(biāo)軸都不垂直的直線
與橢圓交于
兩點,
為坐標(biāo)原點,且
,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)橢圓
上一點
P到其左焦點的距離為3,到右焦點的距離為1,則
P點到右準(zhǔn)線的距離為
A. 6 | B. 2 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
中心在坐標(biāo)原點,焦點在x軸上的橢圓,它的離心率為
,與直線x+y-1=0相交于兩點M、N,且以
為直徑的圓經(jīng)過坐標(biāo)原點.求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
F1、
F2分別為橢圓
C:
=1(
a>
b>0)的左、右兩個焦點.
(1)若橢圓
C上的點
A(1,
)到
F1、
F2兩點的距離之和等于4,寫出橢圓
C的方程和焦點坐標(biāo);
(2)設(shè)點P是(1)中所得橢圓上的動點,當(dāng)P在何位置時,
最大,說明理由,并求出最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
上的點P到它的左準(zhǔn)線的距離是10,那么點P 到它的右焦點的距離是( )
A 15 B 12 C 10 D 8
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)橢圓
的兩個焦點分別為
,點
在橢圓上,且
,則橢圓的離心率等于
.
查看答案和解析>>