若x≥0,y≥0,且x+y≤1,則z=x-y的最大值是________.

1
分析:先根據(jù)約束條件畫出可行域,設(shè)z=x-y,再利用z的幾何意義求最值,只需求出直線z=x-y過可行域內(nèi)的點(diǎn)A時(shí),從而得到z最大值即可.
解答:解:先根據(jù)約束條件畫出可行域,
設(shè)z=x-y,
將最大值轉(zhuǎn)化為y軸上的截距的最小值,
當(dāng)直線zz=x-y經(jīng)過區(qū)域內(nèi)的點(diǎn)A(1,0)時(shí),z最大,
最大值為:1
故答案為:1.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、若x≥0,y≥0,且x+y≤1,則z=x-y的最大值是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)若x≥0,y≥0,且x+2y=1,則x2+y2的取值范圍是
[
1
5
,1]
[
1
5
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x≥0,y≥0,且x+2y=1,則2x+3y2的最小值是
0.75
0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)若x≥0,y≥0,且x+2y=1,則2x+3y2的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x≥0,y≥0,且x+2y=1,那么2x+y2的最小值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案