在極坐標(biāo)系中,求曲線ρ=cosθ+1與ρcosθ=1的公共點(diǎn)到極點(diǎn)的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,圓C的方程為ρ=2sin,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (t為參數(shù)),判斷直線和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為(為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足,P點(diǎn)的軌跡為曲線C2
(1)求C2的方程
(2)在以O(shè)為極點(diǎn),x 軸的正半軸為極軸的極坐標(biāo)系中,射線與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的極坐標(biāo)方程為ρ2=,點(diǎn)F1,F2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).
(1)求直線l和曲線C的普通方程.
(2)求點(diǎn)F1,F2到直線l的距離之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為
(為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求點(diǎn)Q到直線的距離的最小值與最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com