分析 通過置換1可知$\frac{{a}^{2}+1}{2ab}$-1≥$\sqrt{2}$,進(jìn)而再次利用基本不等式可得結(jié)論.
解答 解:因?yàn)閍+b=1,
所以$\frac{{a}^{2}+1}{2ab}$-1=$\frac{{a}^{2}+(a+b)^{2}}{2ab}-1$=$\frac{a}$+$\frac{2a}$≥2$\sqrt{\frac{a}•\frac{2a}}$=$\sqrt{2}$,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{2a}$即a=$\sqrt{2}$-1、b=2-$\sqrt{2}$時(shí)取等號(hào),
所以($\frac{{a}^{2}+1}{2ab}$-1)•c+$\frac{\sqrt{2}}{c-1}$≥$\sqrt{2}$c+$\frac{\sqrt{2}}{c-1}$=$\sqrt{2}$(c-1+$\frac{1}{c-1}$+1)≥3$\sqrt{2}$,
當(dāng)且僅當(dāng)c=2時(shí)取等號(hào),
故答案為:3$\sqrt{2}$.
點(diǎn)評(píng) 本題考查函數(shù)的最值及其幾何意義,考查基本不等式,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com