精英家教網 > 高中數學 > 題目詳情

已知是定義在上的奇函數,且,若時,有成立.
(1)判斷上的單調性,并證明;
(2)解不等式:;
(3)若當時,對所有的恒成立,求實數的取值范圍.

解:(1)上單調遞增.
(2)不等式的解集為
(3)的取值范圍是.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知f (x)=
(1)求函數f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用單調性定義證明在[2,+∞)上單調遞增.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標出現于地面點B處時,測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)為了預防流感,某學校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內每立方米空氣的含藥量(毫克)與時間(小時)成正比.藥物釋放完畢后,的函數關系式為為常數),如圖所示,根據圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數關系式;(2)據測定,當空氣中每立方米空氣的含藥量降到0.25毫克以下時,學生方可進教室,那從藥物釋放開始,至少需要經過多少小時后,學生才能回到進教室?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知定義域為的函數是奇函數                   
⑴求函數的解析式;
⑵判斷并證明函數的單調性;
⑶若對于任意的,不等式恒成立,求的取值范圍.                                             

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(1)求函數的值域;
(2)若時,函數的最小值為,求的值和函數 的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知是定義在上的偶函數,且當時,.
(1)求當時,的解析式;
(2)作出函數的圖象,并指出其單調區(qū)間(不必證明).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數
其中( 
⑴求函數的定義域;
⑵判斷函數的奇偶性,并予以證明;     
⑶判斷它在區(qū)間(0,1)上的單調性并說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)判斷的奇偶性;
(2)求滿足的取值范圍.

查看答案和解析>>

同步練習冊答案