【題目】為實現(xiàn)2020年全面建設小康社會,某地進行產業(yè)的升級改造.經市場調研和科學研判,準備大規(guī)模生產某高科技產品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產該部件.如圖是從甲設備生產的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.

根據行業(yè)質量標準規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級品,1<|x12|≤2為二級品,|x12|>2為三級品.

(Ⅰ)現(xiàn)根據頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產品,再從所抽取的40件產品中,抽取2件尺寸x∈[1215]的產品,記ξ為這2件產品中尺寸x∈[1415]的產品個數(shù),求ξ的分布列和數(shù)學期望;

(Ⅱ)將甲設備生產的產品成箱包裝出售時,需要進行檢驗.已知每箱有100件產品,每件產品的檢驗費用為50.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產品中隨機抽檢了10件,結果發(fā)現(xiàn)有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據,問是否對該箱中剩余產品進行一一檢驗?請說明理由;

(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產品中一、二、三級品的概率分別是,,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據.應選購哪種設備?請說明理由.

【答案】(Ⅰ)分布列見解析,;(Ⅱ)不對剩余產品進行逐一檢驗,理由見解析;(Ⅲ)應選購乙設備,理由見解析.

【解析】

I)利用頻率分布直方圖中的頻率(概率)求出尺寸在的產品件數(shù),及在的產品件數(shù),得ξ的可能取值為0,12,分別計算出概率得概率分布列,由分布列計算出期望;

II)三級品的概率為(0.1+0.075)×1=0.175,計算對剩余產品逐一檢驗和對剩余產品不檢驗需支付的費用,比較后可得;

III)利用頻率(概率)計算出兩種方案的利潤期望,比較可得.

I)抽取的40件產品中,產品尺寸x∈[12,15]的件數(shù)為:40×[(0.2+0.175+0.075)×1]=18,

其中x∈[1415]的產品件數(shù)為40×(0.075×1)=3,

ξ的可能取值為0,1,2,

Pξ=0,Pξ=1Pξ=2,

ξ的分布列為:

Eξ012.

II)三級品的概率為(0.1+0.075)×1=0.175

若對剩余產品逐一檢驗,則廠家需支付費用50×100=5000;

若對剩余產品不檢驗,則廠家需支付費用50×10+200×90×0.175=3650,

50003650

故不對剩余產品進行逐一檢驗.

III)設甲設備生產一件產品的利潤為y1,乙設備生產一件產品的利潤為y2,

Ey1)=500×(0.3+0.2)+400×(0.150+0.175)+200×0.175=415,

Ey2)=500400200420.

Ey1)<Ey2.

∴應選購乙設備.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市旅游管理部門為提升該市26個旅游景點的服務質量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分,每項評分最低分0分,最高分100分,每個景點總分為這五項得分之和,根據考核評分結果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如下:

請根據圖中所提供的信息,完成下列問題:

I)若從交通得分前6名的景點中任取2個,求其安全得分都大于90分的概率;

II)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為,求隨機變量的分布列和數(shù)學期望;

III)記該市26個景點的交通平均得分為安全平均得分為,寫出的大小關系?(只寫出結果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周髀算經》是我國古老的天文學和數(shù)學著作,其書中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測影子的長度),夏至、小暑、大暑、立秋、處暑、白露、秋分、寒露、霜降是連續(xù)的九個節(jié)氣,其晷長依次成等差數(shù)列,經記錄測算,這九個節(jié)氣的所有晷長之和為49.5尺,夏至、大暑、處暑三個節(jié)氣晷長之和為10.5尺,則立秋的晷長為(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)函數(shù)內有兩個不同零點,求的取值范圍;

2)在第(1)問的條件下判斷當時,曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設點M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面底面,,,,分別為的中點.

1)求證:平面;

2)求二面角的余弦值;

3)在線段上是否存在一點,使與平面所成角的正弦值為,若存在求出的長,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1a0,b0)的焦點分別為F1(﹣5,0),F25,0),PC上一點,PF1PF2,tanPF1F2,則C的方程為(

A.x21B.y21

C.1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數(shù)分布表:

以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.

(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:

完成上述列聯(lián)表,并判斷能否有的把握認為停車是否超過6小時與性別有關?

(2)(i)X表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求X的概率分布列及期望:

(ii)現(xiàn)隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求P()的概率.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且 , 成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據題意, , 成等比數(shù)列得求出d即可得通項公式;(2)求項的絕對前n項和,首先分清數(shù)列有多少項正數(shù)項和負數(shù)項,然后正數(shù)項絕對值數(shù)值不變,負數(shù)項絕對值要變號,從而得,得,由,得,∴ 計算 即可得出結論

解析:(1)由題意可得,則,

,即

化簡得,解得(舍去).

.

(2)由(1)得時,

,得,由,得

.

.

點睛:對于數(shù)列第一問首先要熟悉等差和等比通項公式及其性質即可輕松解決,對于第二問前n項的絕對值的和問題,首先要找到數(shù)列由多少正數(shù)項和負數(shù)項,進而找到絕對值所影響的項,然后在求解即可得結論

型】解答
束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

同步練習冊答案