如圖所示,在四面體PABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.F是線段PB上一點(diǎn),CF=,點(diǎn)E在線段AB上,且EF⊥PB.

(1)證明:PB⊥平面CEF;

(2)求二面角BCEF的大。

答案:
解析:

  (1)∵PA2+AC2=36+64=100=PC2

  ∴△PAC是以∠PAC為直角的直角三角形,同理可證,△PAB是以∠PAB為直角的直角三角形,△PCB是以∠PCB為直角的直角三角形,

  故PA⊥平面ABC.

  又∵S△PBC|PC||BC|=×10×6=30.

  而|PB||CF|==30=S△PBC,

  故CF⊥PB,又已知EF⊥PB,

  ∴PB⊥平面CEF.

  (2)由(1)知PB⊥CE,PA⊥平面ABC,

  又∵PA⊥平面ABC

  ∴PA⊥CE

  ∵PB⊥平面CEF

  ∴PB⊥CE

  ∴CE⊥平面PAB

  ∴CE⊥AB

  在平面PAB內(nèi),過F作FF1垂直AB交AB于F1,則FF1⊥平面ABC,

  ∴FF1⊥CE

  又∵CE⊥EF1

  ∴CE⊥平面EFF1

  ∴CE⊥EF

  故∠FEB是二面角BCEF的平面角.

  tanFEB=cotPBA=,

  二面角BCEF的大小為arctan


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在四面體P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
.F是線段PB上一點(diǎn),CF=
15
17
34
,點(diǎn)E在線段AB上,且EF⊥PB.
(1)證明:PB⊥平面CEF;
(2)求二面角B-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四面體P-ABC中,PA⊥BC,PB⊥AC,BC=2,PB=PC,P-BC-A是60°的二面角.
(1)求證:PC⊥AB;
(2)求四面體P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四面體P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.F是線段PB上一點(diǎn),CF=,點(diǎn)E在線段AB上,且EF⊥PB.

(1)證明PB⊥平面CEF;

(2)求二面角BCEF的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分14分)

如圖所示,在四面體P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F(xiàn)是線段PB上一點(diǎn),,點(diǎn)E在線段AB上,且EF⊥PB.

   (Ⅰ)證明:PB⊥平面CEF;

   (Ⅱ)求二面角B—CE—F的正弦值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考真題 題型:解答題

如圖所示,在四面體P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=,F(xiàn)是線段PB上一點(diǎn),CF=,點(diǎn)E在線段AB上,且EF⊥PB,
(Ⅰ)證明:PB⊥平面CEF;
(Ⅱ)求二面角B-CE-F的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案