【題目】如圖,在四棱錐中,底面,底面是矩形,,的中點(diǎn).

1求證:平面

2已知點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),且平面平面.若,求點(diǎn)到平面的距離.

【答案】1證明見解析;2.

【解析】

試題分析:1由題意可知,因?yàn)?/span>,所以需要用到等腰三角形的三線合一的性質(zhì)可得出需要取的中點(diǎn),然后證明平面,從而得到證明;2利用等體積轉(zhuǎn)換的方法即可求出點(diǎn)到平面的距離.

試題解析:1證明:取的中點(diǎn)為,連接,

的中點(diǎn),,

平面與平面為同一平面,

底面,底面是矩形,

,即平面,.

平面.

2,連接,

的中點(diǎn),,

,平面平面,

當(dāng)的交點(diǎn)時(shí),平面平面,

在矩形中,求得,

,

到平面的距離為,設(shè)點(diǎn)到平面的距離為,

,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)試證明函數(shù)是偶函數(shù);

2)畫出的圖象;(要求先用鉛筆畫出草圖,再用黑色簽字筆描摹,否則不給分)

3)請(qǐng)根據(jù)圖象指出函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)

4)當(dāng)實(shí)數(shù)取不同的值時(shí),討論關(guān)于的方程的實(shí)根的個(gè)數(shù);(不必求出方程的解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,BC所對(duì)應(yīng)的邊分別為a,b,c

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=sinπωxcosωx+cos2ωxω0)的最小正周期為π

)求ω的值;

)將函數(shù)y=fx)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)y=gx)的圖象,求函數(shù)y=gx)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個(gè)籃球較強(qiáng)的班級(jí)的籃球隊(duì)員中選出人組成男子籃球隊(duì),代表該地區(qū)參賽,四個(gè)籃球較強(qiáng)的班級(jí)籃球隊(duì)員人數(shù)如下表:

班級(jí)

高三7

高三17

高二31

高二32

人數(shù)

12

6

9

9

1現(xiàn)采取分層抽樣的方法從這四個(gè)班中抽取運(yùn)動(dòng)員,求應(yīng)分別從這四個(gè)班抽出的隊(duì)員人數(shù);

2該中學(xué)籃球隊(duì)奮力拼搏,獲得冠軍.若要從高三年級(jí)抽出的隊(duì)員中選出兩位隊(duì)員作為冠軍的代表發(fā)言,求選出的兩名隊(duì)員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn),過點(diǎn);當(dāng)時(shí),圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列變量中不屬于分類變量的是( )

A. 性別 B. 吸煙

C. 宗教信仰 D. 國(guó)籍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是 .(填序號(hào))

當(dāng)0<CQ<時(shí),S為四邊形;

當(dāng)CQ=時(shí),S為等腰梯形;

當(dāng)CQ=時(shí),S與C1D1的交點(diǎn)R滿足C1R=

當(dāng)<CQ<1時(shí),S為六邊形;

當(dāng)CQ=1時(shí),S的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓和圓

(1)若直線過點(diǎn),且被圓截得的弦長(zhǎng)為是,求直線的方程;

(2)設(shè)為平面上的點(diǎn),滿足:存在過點(diǎn)的無窮多對(duì)互相垂直的直線,它們分別與圓和圓相交,且直線與被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案