分析:(Ⅰ)由已知
a2=c-,a3=(c-)2+,利用
a3-a2=,可求c的值;
(Ⅱ)由
an+1=-an+2可得
=-,從而
n |
|
k=1 |
-an+1=(5an+1+3)(8an+1-13) |
39(2-an+1) |
,可以證明1≤a
n<a
n+1<2,從而得證.
解答:解:(Ⅰ)由已知
a2=c-,a3=(c-)2+由
a3-a2=解得c=2或c=1(舍去)(Ⅱ)由
an+1=-an+2有an(an+1-an)=(an-2)(an+1-2),從而=-因為
a1=1,故n |
|
k=1 |
=n |
|
k=1 |
(-)=-=從而
n |
|
k=1 |
-an+1=(5an+1+3)(8an+1-13) |
39(2-an+1) |
①
下面證明1≤a
n<a
n+1<2②
由
an+1-an=(an-2)2≥0當(dāng)且僅當(dāng)an=2時an+1=an又a
1=1.故a
n+1>a
n≥1
再用數(shù)學(xué)歸納法證明a
n<21°當(dāng)n=1時,a
1=1<2顯然結(jié)論正確.2°假設(shè)n=k時結(jié)論正確,即有a
k<2.
注意到
ak+1=-ak+2=(ak-1)2+.
而函數(shù)
y=(x-1)2+在x∈[1,+∞)單增.由1≤ak<2所以
ak+1<(2-1)2+=2.
這就是說,當(dāng)n=k+1時結(jié)論也正確
由1°,2°可知a
n<2對n∈N
*恒成立,從而②得證.
由已知易求
a2=,a3=.
當(dāng)
n=1時,<a2.
當(dāng)
n=2時,+=a3.
當(dāng)
n≥3時,由a3=<an+1<2及①立得n |
|
k=1 |
>an+1.
點評:本題以數(shù)列遞推式為載體,考查數(shù)列與不等式,考查遞推式的運用,有一定的難度.