【題目】已知函數(shù)f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關(guān)于x軸的對稱點,則實數(shù)a的取值范圍為( )
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.
【答案】D
【解析】解:函數(shù)f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關(guān)于x軸的對稱點, ∴f(x)=﹣g(x)有解,
∴l(xiāng)nx﹣x3=﹣x3+ax,
∴l(xiāng)nx=ax,在(0,+∞)有解,
分別設(shè)y=lnx,y=ax,
若y=ax為y=lnx的切線,
∴y′= ,
設(shè)切點為(x0 , y0),
∴a= ,ax0=lnx0 ,
∴x0=e,
∴a= ,
結(jié)合圖象可知,a≤
故選:D.
由題意可知f(x)=﹣g(x)有解,即y=lnx與y=ax有交點,根據(jù)導數(shù)的幾何意義,求出切點,結(jié)合圖象,可知a的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x-4| (x∈R)
(1)用分段形式寫出函數(shù)f(x)的表達式,并作出函數(shù)f(x)的圖象;
(2) 根據(jù)圖象指出f(x)的單調(diào)區(qū)間,并寫出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三個零點,寫出k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的點(不與端點重合),F(xiàn)為DA上的點,N為BE的中點.
(Ⅰ)若M是EC的中點,AF=3FD,求證:FN∥平面MBD;
(Ⅱ)若平面MBD與平面ABD所成角(銳角)的余弦值為 ,試確定點M在EC上的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣m(lnx+ )(m為實數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當m>1時,討論f(x)的單調(diào)性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)內(nèi)有兩個零點,求實數(shù)m的取值范圍.
(Ⅲ)當m=1時,證明:xf(x)+xlnx+1>x+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),,若對任意成立,則下列命題中正確的命題個數(shù)是( )
(1)
(2)
(3)不具有奇偶性
(4)的單調(diào)增區(qū)間是
(5)可能存在經(jīng)過點的直線與函數(shù)的圖象不相交
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三點,,,曲線上任意一點滿足.
求的方程;
已知點,動點 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點分別為D,E,求與的面積的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數(shù)y=f(x)的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中, , ,若將其沿AC折成直二面角D﹣AC﹣B,則三棱錐D﹣ACB的外接球的表面積為( )
A.16π
B.8π
C.4π
D.2π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.
(1)要使矩形的面積大于平方米,則的長應(yīng)在什么范圍內(nèi)?
(2)當的長度是多少時,矩形花壇的面積最小?并求出最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com